Search results 34 matches in 0.002 seconds
Showing 1 - 34

1) Cluster 1 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Rumba/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM5 (Rumba) Cadence:2.14 seconds
Stop:2014-11-26 01:03:34 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

2) Cluster 1 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Rumba/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM5 (Rumba) Cadence:52 seconds
Stop:2014-11-26 01:03:34 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

3) Cluster II Rumba Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-11-26 01:03:21 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

4) Cluster 2 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Salsa/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM6 (Salsa) Cadence:2.14 seconds
Stop:2014-11-26 01:03:33 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

5) Cluster 2 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Salsa/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM6 (Salsa) Cadence:52 seconds
Stop:2014-11-26 01:03:33 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

6) Cluster II Salsa Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-11-26 01:02:26 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

7) Cluster 3 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Samba/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM7 (Samba) Cadence:2.14 seconds
Stop:2014-11-26 01:03:34 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

8) Cluster 3 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Samba/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM7 (Samba) Cadence:52 seconds
Stop:2014-11-26 01:03:34 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

9) Cluster II Samba Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-11-26 01:02:58 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

10) Cluster 4 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Tango/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM8 (Tango) Cadence:2.14 seconds
Stop:2014-11-26 01:03:33 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

11) Cluster 4 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Tango/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM8 (Tango) Cadence:52 seconds
Stop:2014-11-26 01:03:33 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

12) Cluster II Tango Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-11-26 01:02:47 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

13) Cluster WHISPER Combined Daily Dynamic Spectrograms maxmize
Resource ID:spase://VWO/DisplayData/Cluster/WHISPER/DS.JPG.P1D
Start:2001-01-01 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:
Stop:2013-12-31 23:59:59 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:DisplayData
These WHISPER daily dynamic spectrograms from each of the four Cluster spacecraft are plots of the received signal (the color scale indicates the voltage spectral density as Vrms Hz^-1/2) as a function of receiver frequency (on vertical axis) and time (horizontal axis). At the top of the image is the name of the instrument and date and above each plot the overflow status is indicated by a color code. Each spectrogram spans a frequency range from 2 through 80 kHz. Beneath the time labels on the horizontal axis are ephemeris data: position of the spacecraft in radial distance (Earth radii), latitude, and local time (GSE coordinates). The plots include data when the instruments are operating in both passive and active mode.

14) Cluster II Summary Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster/WHISPER/SummaryParameter/60S
Start:2001-01-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:60 seconds
Stop:2014-11-26 01:02:26 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

15) THEMIS-A: Electric Field 3s and 1/8s Data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/A/EFI/PT3S
Start:2007-02-24 00:00:00 Observatory:THEMIS-A Cadence:3 seconds
Stop:2014-11-26 01:02:46 Instrument:THEMIS-A Electric Field Instrument Resource:NumericalData
THEMIS-A Electric Field Instrument (EFI) electric field measurements. This Level 2 product is a 3D estimate of E_perp derived from the spin plane E-field measurements assuming E dot B = 0, using relevant FGM (Flux-Gate Magnetometer) data. Includes spin-averaged, and Fast-survey field data. Spin-averaged (EFS_DOT0) data has approximately 3-second time resolution. Fast-survey (EFF_DOT0) data has 1/8-second time resolution.

16) THEMIS-A: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/A/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-A Cadence:4 seconds
Stop:2014-11-26 01:02:44 Instrument:THEMIS-A Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

17) THEMIS-A: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/A/FFT/PT0.0556S
Start:2007-02-24 00:00:00 Observatory:THEMIS-A Cadence:0.0556 seconds
Stop:2014-11-26 01:02:44 Instrument:THEMIS-A Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal | Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 9 June 2008: Particle burst spectra resolution increased from 16 to 64 bins and cadence slowed from 4 Hz to 1 Hz for closer analysis of spectral features. N/A: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. 15 Aug 2008: E34DC and E56DC inputs switched to E34AC and E56AC to reduce impact of wake fields on FFT spectral measurements. 15 Oct 2008: Particle burst spectra resolution reduced from 64 to 32 bins and the rate increased from 1 Hz to 2 Hz; a response to noise from plasma wake fields in the 64 bin spectra. Table 3: Instrument-Spacecraft Physical Configuration Instrument | Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

18) THEMIS-A: On Board spin fits (FIT) of Electric (EFI) and Magnetic (FGM) field. On-Board Spin-fit electric and magnetic field data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/A/Fits/PT3S
Start:2008-01-14 17:00:00 Observatory:THEMIS-A Cadence:3 seconds
Stop:2014-11-26 01:02:46 Instrument:THEMIS-A Electric Field Instrument Resource:NumericalData
THEMIS-A: On Board spin fits of Electric (EFI) and Magnetic (FGM) fields. This file contains data EFI and FGM that has been despun on-board to 3 second resolution. It stores meta information like the number of points that contributed to each spin and the standard deviation of those points. For the EFI data it also stores variables with the Z component of the EFI data zeroed and the Z component of the EFI estimated using the E.B=0 equality. The need to use an estimated Z axis for the EFI is due to error in measurements from the EFI axial booms. These data are provided in DSL (despun spacecraft L-Z vector), GSM, and GSE coordinates.

19) THEMIS-B: Electric Field 3s and 1/8s Data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/B/EFI/PT3S
Start:2007-02-24 00:00:00 Observatory:THEMIS-B Cadence:3 seconds
Stop:2014-11-26 01:02:43 Instrument:THEMIS-B Electric Field Instrument Resource:NumericalData
THEMIS-B Electric Field Instrument (EFI) electric field measurements. This Level 2 product is a 3D estimate of E_perp derived from the spin plane E-field measurements assuming E dot B = 0, using relevant FGM (Flux-Gate Magnetometer) data. Includes spin-averaged, and Fast-survey field data. Spin-averaged (EFS_DOT0) data has approximately 3-second time resolution. Fast-survey (EFF_DOT0) data has 1/8-second time resolution.

20) THEMIS-B: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/B/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-B Cadence:4 seconds
Stop:2014-11-26 01:02:40 Instrument:THEMIS-B Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

21) THEMIS-B: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/B/FFT/PT0.0556S
Start:2006-06-26 18:30:23 Observatory:THEMIS-B Cadence:0.0556 seconds
Stop:2014-11-26 01:02:41 Instrument:THEMIS-B Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 30 June - 3 July 2008: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. Table 3: Instrument-Spacecraft Physical Configuration Instrument Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM: *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

22) THEMIS-B: On Board spin fits (FIT) of Electric (EFI) and Magnetic (FGM) field. On-Board Spin-fit electric and magnetic field data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/B/Fits/PT3S
Start:2008-01-14 17:00:00 Observatory:THEMIS-B Cadence:3 seconds
Stop:2014-11-26 01:02:43 Instrument:THEMIS-B Electric Field Instrument Resource:NumericalData
THEMIS-B: On Board spin fits of Electric (EFI) and Magnetic (FGM) fields. This file contains data EFI and FGM that has been despun on-board to 3 second resolution. It stores meta information like the number of points that contributed to each spin and the standard deviation of those points. For the EFI data it also stores variables with the Z component of the EFI data zeroed and the Z component of the EFI estimated using the E.B=0 equality. The need to use an estimated Z axis for the EFI is due to error in measurements from the EFI axial booms. These data are provided in DSL (despun spacecraft L-Z vector), GSM, and GSE coordinates.

23) THEMIS-C: Electric Field 3s and 1/8s Data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/C/EFI/PT3S
Start:2007-02-24 00:00:00 Observatory:THEMIS-C Cadence:3 seconds
Stop:2014-11-26 01:02:40 Instrument:THEMIS-C Electric Field Instrument Resource:NumericalData
THEMIS-C Electric Field Instrument (EFI) electric field measurements. This Level 2 product is a 3D estimate of E_perp derived from the spin plane E-field measurements assuming E dot B = 0, using relevant FGM (Flux-Gate Magnetometer) data. Includes spin-averaged, and Fast-survey field data. Spin-averaged (EFS_DOT0) data has approximately 3-second time resolution. Fast-survey (EFF_DOT0) data has 1/8-second time resolution.

24) THEMIS-C: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/C/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-C Cadence:4 seconds
Stop:2014-11-26 01:02:37 Instrument:THEMIS-C Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

25) THEMIS-C: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/C/FFT/PT0.0556S
Start:2007-02-24 03:37:16 Observatory:THEMIS-C Cadence:0.0556 seconds
Stop:2014-11-26 01:02:38 Instrument:THEMIS-C Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 30 June - 3 July 2008: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. Table 3: Instrument-Spacecraft Physical Configuration Instrument Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM: *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

26) THEMIS-C: On Board spin fits (FIT) of Electric (EFI) and Magnetic (FGM) field. On-Board Spin-fit electric and magnetic field data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/C/Fits/PT3S
Start:2008-01-14 17:00:00 Observatory:THEMIS-C Cadence:3 seconds
Stop:2014-11-26 01:02:40 Instrument:THEMIS-C Electric Field Instrument Resource:NumericalData
THEMIS-C: On Board spin fits of Electric (EFI) and Magnetic (FGM) fields. This file contains data EFI and FGM that has been despun on-board to 3 second resolution. It stores meta information like the number of points that contributed to each spin and the standard deviation of those points. For the EFI data it also stores variables with the Z component of the EFI data zeroed and the Z component of the EFI estimated using the E.B=0 equality. The need to use an estimated Z axis for the EFI is due to error in measurements from the EFI axial booms. These data are provided in DSL (despun spacecraft L-Z vector), GSM, and GSE coordinates.

27) THEMIS-D: Electric Field 3s and 1/8s Data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/D/EFI/PT3S
Start:2007-02-24 00:00:00 Observatory:THEMIS-D Cadence:3 seconds
Stop:2014-11-26 01:02:33 Instrument:THEMIS-D Electric Field Instrument Resource:NumericalData
THEMIS-D Electric Field Instrument (EFI) electric field measurements. This Level 2 product is a 3D estimate of E_perp derived from the spin plane E-field measurements assuming E dot B = 0, using relevant FGM (Flux-Gate Magnetometer) data. Includes spin-averaged, and Fast-survey field data. Spin-averaged (EFS_DOT0) data has approximately 3-second time resolution. Fast-survey (EFF_DOT0) data has 1/8-second time resolution.

28) THEMIS-D: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/D/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-D Cadence:4 seconds
Stop:2014-11-26 01:02:30 Instrument:THEMIS-D Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

29) THEMIS-D: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/D/FFT/PT0.0556S
Start:2007-02-24 00:00:00 Observatory:THEMIS-D Cadence:0.0556 seconds
Stop:2014-11-26 01:02:31 Instrument:THEMIS-D Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal | Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 23-27 June 2008: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. Table 3: Instrument-Spacecraft Physical Configuration Instrument | Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

30) THEMIS-D: On Board spin fits (FIT) of Electric (EFI) and Magnetic (FGM) field. On-Board Spin-fit electric and magnetic field data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/D/Fits/PT3S
Start:2008-01-14 17:00:00 Observatory:THEMIS-D Cadence:3 seconds
Stop:2014-11-26 01:02:33 Instrument:THEMIS-D Electric Field Instrument Resource:NumericalData
THEMIS-D: On Board spin fits of Electric (EFI) and Magnetic (FGM) fields. This file contains data EFI and FGM that has been despun on-board to 3 second resolution. It stores meta information like the number of points that contributed to each spin and the standard deviation of those points. For the EFI data it also stores variables with the Z component of the EFI data zeroed and the Z component of the EFI estimated using the E.B=0 equality. The need to use an estimated Z axis for the EFI is due to error in measurements from the EFI axial booms. These data are provided in DSL (despun spacecraft L-Z vector), GSM, and GSE coordinates.

31) THEMIS-E: Electric Field 3s and 1/8s Data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/E/EFI/PT3S
Start:2007-02-24 00:00:00 Observatory:THEMIS-E Cadence:3 seconds
Stop:2014-11-26 01:02:30 Instrument:THEMIS-E Electric Field Instrument Resource:NumericalData
THEMIS-E Electric Field Instrument (EFI) electric field measurements. This Level 2 product is a 3D estimate of E_perp derived from the spin plane E-field measurements assuming E dot B = 0, using relevant FGM (Flux-Gate Magnetometer) data. Includes spin-averaged, and Fast-survey field data. Spin-averaged (EFS_DOT0) data has approximately 3-second time resolution. Fast-survey (EFF_DOT0) data has 1/8-second time resolution.

32) THEMIS-E: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/E/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-E Cadence:4 seconds
Stop:2014-11-26 01:02:28 Instrument:THEMIS-E Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

33) THEMIS-E: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/E/FFT/PT0.0556S
Start:2007-02-24 00:00:00 Observatory:THEMIS-E Cadence:0.0556 seconds
Stop:2014-11-26 01:02:28 Instrument:THEMIS-E Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal | Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 23-27 June 2008: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. Table 3: Instrument-Spacecraft Physical Configuration Instrument | Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM: *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

34) THEMIS-E: On Board spin fits (FIT) of Electric (EFI) and Magnetic (FGM) field. On-Board Spin-fit electric and magnetic field data maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/E/Fits/PT3S
Start:2008-01-14 17:00:00 Observatory:THEMIS-E Cadence:3 seconds
Stop:2014-11-26 01:02:30 Instrument:THEMIS-E Electric Field Instrument Resource:NumericalData
THEMIS-E: On Board spin fits of Electric (EFI) and Magnetic (FGM) fields. This file contains data EFI and FGM that has been despun on-board to 3 second resolution. It stores meta information like the number of points that contributed to each spin and the standard deviation of those points. For the EFI data it also stores variables with the Z component of the EFI data zeroed and the Z component of the EFI estimated using the E.B=0 equality. The need to use an estimated Z axis for the EFI is due to error in measurements from the EFI axial booms. These data are provided in DSL (despun spacecraft L-Z vector), GSM, and GSE coordinates.

Showing 1 - 34