Showing 1 - 7 |

1) | IMP 8 MIT Full Resolution Definitive Interplanetary Plasma Data | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/IMP8/PLS/PT01M | ||||||||||||||||||

| ||||||||||||||||||

The MIT Faraday cup experiment on IMP 8 measures currents from solar wind ions, and from these measurements we calculate the velocity, density, and temperature of the solar wind. The IMP 8 data files consist of fine resolution data (approximately 1 minute resolution). IMP 8 spins with a period of approximately 2.7s. The Faraday Cup (FC) instrument scans the solar wind distribution stepping through a contiguous set of energy windows, one step per spacecraft spin. The FC instrument divides the spin into thirty-two, 11.25 degree angular sectors and integrates the measured currents over different angular sectors depending upon the Mode in which the instrument is operating. The border between two of the 11.25 degree angular sectors lies on the Sun-spacecraft line. The FC sensor collector plate is divided into two, semi-circular halves; the division line is parallel to the spacecraft spin plane which is approximately parallel to the ecliptic plane. The split collector allow determination of the bulk plasma flow relative to the spin plane; North/South angles refer to flows coming from above or below the spin plane respectively (flows from the South are designated as having a positive N/S angle). The bulk flow angle in the spin plane is determined from the measurements of current vs. rotation angle. The currents telemetered to the ground are the sums of currents for the two half-collectors ("A" and "B") and, for the TMS and AQM modes, also the current for the half-collector "B". Electrons are measured except for the eight angles near the Sun. The experiment has two memories only one of which is operating perfectly. As a result, only every other TMS spectrum is usable, and the time between spectra is usually twice that that would be expected from the spacecraft spin rate. The bad half-memory also limits the energy windows that can be used in the other modes, since they require both memories to hold the data. On occasion, the data are read out rapidly enough by the spacecraft to allow repeated use of the good half-memory, and the time resolution in the TMS is approximately 32 seconds. |

2) | IMP-8 Linearly Interpolated 60 s Resolution PLS data in GSE Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/IMP8/PLS/Processed/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

IMP-8 linearly interpolated to have the measurements on the minute at 60 s resolution PLS data in GSE coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

3) | IMP-8 Linearly Interpolated 60 s Resolution PLS data in GSM Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/IMP8/PLS/Processed/GSM/PT60S | ||||||||||||||||||

| ||||||||||||||||||

IMP-8 linearly interpolated to have the measurements on the minute at 60 s resolution PLS data in GSM coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

4) | Wind SWE Linearly Interpolated 60 s Resolution data in GSE Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Wind/SWE/Processed/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Wind linearly interpolated to have the measurements on the minute at 60 s resolution SWE data in GSE coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

5) | Wind SWE Linearly Interpolated 60 s Resolution data in GSM Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Wind/SWE/Processed/GSM/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Wind linearly interpolated to have the measurements on the minute at 60 s resolution SWE data in GSM coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

6) | Wind SWE Weimer Propagated 60 s Resolution data in GSE Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Wind/SWE/Propagated.SWE/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Wind SWE propagated solar wind data and linearly interpolated to have the measurements on the minute at 60 s resolution data in GSE coordinates. This data set consists of propagated solar wind data that has first been propagated to a position just outside of the nominal bow shock (about 17, 0, 0 Re) and then linearly interpolated to 1 min resolution using the interp1.m function in MATLAB. The input data for this data set is a 1 min resolution processed solar wind data constructed by Dr. J.M. Weygand. The method of propagation is similar to the minimum variance technique and is outlined in Dan Weimer et al. [2003; 2004]. The basic method is to find the minimum variance direction of the magnetic field in the plane orthogonal to the mean magnetic field direction. This minimum variance direction is then dotted with the difference between final position vector minus the original position vector and the quantity is divided by the minimum variance dotted with the solar wind velocity vector, which gives the propagation time. This method does not work well for shocks and minimum variance directions with tilts greater than 70 degrees of the sun-earth line. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies References: Weimer, D. R. (2004), Correction to ??Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,?? J. Geophys. Res., 109, A12104, doi:10.1029/2004JA010691. Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108, 1026, doi:10.1029/2002JA009405. |

7) | Wind SWE Weimer Propagated 60 s Resolution data in GSM Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Wind/SWE/Propagated.SWE/GSM/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Wind SWE propagated solar wind data and linearly interpolated to have the measurements on the minute at 60 s resolution data in GSM coordinates. This data set consists of propagated solar wind data that has first been propagated to a position just outside of the nominal bow shock (about 17, 0, 0 Re) and then linearly interpolated to 1 min resolution using the interp1.m function in MATLAB. The input data for this data set is a 1 min resolution processed solar wind data constructed by Dr. J.M. Weygand. The method of propagation is similar to the minimum variance technique and is outlined in Dan Weimer et al. [2003; 2004]. The basic method is to find the minimum variance direction of the magnetic field in the plane orthogonal to the mean magnetic field direction. This minimum variance direction is then dotted with the difference between final position vector minus the original position vector and the quantity is divided by the minimum variance dotted with the solar wind velocity vector, which gives the propagation time. This method does not work well for shocks and minimum variance directions with tilts greater than 70 degrees of the sun-earth line. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies References: Weimer, D. R. (2004), Correction to ??Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,?? J. Geophys. Res., 109, A12104, doi:10.1029/2004JA010691. Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108, 1026, doi:10.1029/2002JA009405. |

Showing 1 - 7 |