Showing 1 - 16 |

1) | AMPTE/IRM Plasma Data | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/AMPTE_IRM/Plasma/PT4.4S | ||||||||||||||||||

| ||||||||||||||||||

AMPTE/IRM spin-averaged plasma moments at ~4.4 second resolution. |

2) | Geotail CPI Definitive Solar Wind Moments | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Geotail/CPI/SWA_PT48S | ||||||||||||||||||

| ||||||||||||||||||

The CPI Solar Wind analyzer definitive plasma moments. The CPI/SW data are good in the solar wind and may be usefull in the magnetosheath. |

3) | Geotail CPI Plasma Key Parameters (64s) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Geotail/CPI/kp_PT64S | ||||||||||||||||||

| ||||||||||||||||||

A combination of plasma key parameters from the Geotail CPI analyzers. The CPI-SW Solar Wind Analyzer provides * Ion number density * Average proton energy * Bulk flow velocity The CPI-HP Hot Plasma Analyzer provides * Ion number density * Average proton energy * Average electron energy * Bulk flow velocity * Plasma pressure The CPI-IC Ion Composition Analyzer provides principal Species * H+ * He++ * He+ * O+ |

4) | Geotail Linearly Interpolated 60 s Resolution Coordinates Comprehensive Plasma Instrumentation (CPI) data in GSE | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Geotail/CPI/Processed/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Geotail linearly interpolated to have the measurements on the minute at 60 s resolution CPI data in GSE coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

5) | Geotail Linearly Interpolated 60 s Resolution Coordinates Comprehensive Plasma Instrumentation (CPI) data in GSM | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Geotail/CPI/Processed/GSM/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Geotail linearly interpolated to have the measurements on the minute at 60 s resolution CPI data in GSM coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

6) | Geotail Comprehensive Plasma Instrumentation (CPI) data Weimer Propagated 60 s Resolution in GSE Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Geotail/CPI/Propagated.CPI/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Geotail Weimer propagated solar wind data and linearly interpolated to have the measurements on the minute at 60 s resolution CPI data in GSE coordinates. This data set consists of propagated solar wind data that has first been propagated to a position just outside of the nominal bow shock (about 17, 0, 0 Re) and then linearly interpolated to 1 min resolution using the interp1.m function in MATLAB. The input data for this data set is a 1 min resolution processed solar wind data constructed by Dr. J.M. Weygand. The method of propagation is similar to the minimum variance technique and is outlined in Dan Weimer et al. [2003; 2004]. The basic method is to find the minimum variance direction of the magnetic field in the plane orthogonal to the mean magnetic field direction. This minimum variance direction is then dotted with the difference between final position vector minus the original position vector and the quantity is divided by the minimum variance dotted with the solar wind velocity vector, which gives the propagation time. This method does not work well for shocks and minimum variance directions with tilts greater than 70 degrees of the sun-earth line. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies References: Weimer, D. R. (2004), Correction to ??Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,?? J. Geophys. Res., 109, A12104, doi:10.1029/2004JA010691. Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108, 1026, doi:10.1029/2002JA009405. |

7) | Geotail Comprehensive Plasma Instrumentation (CPI) data Weimer Propagated 60 s Resolution in GSM Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Geotail/CPI/Propagated.CPI/GSM/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Geotail Weimer propagated solar wind data and linearly interpolated to have the measurements on the minute at 60 s resolution CPI data in GSM coordinates. This data set consists of propagated solar wind data that has first been propagated to a position just outside of the nominal bow shock (about 17, 0, 0 Re) and then linearly interpolated to 1 min resolution using the interp1.m function in MATLAB. The input data for this data set is a 1 min resolution processed solar wind data constructed by Dr. J.M. Weygand. The method of propagation is similar to the minimum variance technique and is outlined in Dan Weimer et al. [2003; 2004]. The basic method is to find the minimum variance direction of the magnetic field in the plane orthogonal to the mean magnetic field direction. This minimum variance direction is then dotted with the difference between final position vector minus the original position vector and the quantity is divided by the minimum variance dotted with the solar wind velocity vector, which gives the propagation time. This method does not work well for shocks and minimum variance directions with tilts greater than 70 degrees of the sun-earth line. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies References: Weimer, D. R. (2004), Correction to ??Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,?? J. Geophys. Res., 109, A12104, doi:10.1029/2004JA010691. Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108, 1026, doi:10.1029/2002JA009405. |

8) | Geotail Linearly Interpolated 60 s Resolution Low Energy Particle (LEP) experiment data in GSE Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Geotail/LEP/Processed/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Geotail linearly interpolated to have the measurements on the minute at 60 s resolution LEP data in GSE coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

9) | Geotail Linearly Interpolated 60 s Resolution Low Energy Particle (LEP) experiment data in GSM Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Geotail/LEP/Processed/GSM/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Geotail linearly interpolated to have the measurements on the minute at 60 s resolution LEP data in GSM coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

10) | Geotail Low Energy Particle (LEP) experiment data Weimer Propagated 60 s Resolution in GSE Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Geotail/LEP/Propagated.LEP/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Geotail LEP Weimer propagated solar wind data and linearly interpolated to have the measurements on the minute at 60 s resolution data in GSE coordinates. This data set consists of propagated solar wind data that has first been propagated to a position just outside of the nominal bow shock (about 17, 0, 0 Re) and then linearly interpolated to 1 min resolution using the interp1.m function in MATLAB. The input data for this data set is a 1 min resolution processed solar wind data constructed by Dr. J.M. Weygand. The method of propagation is similar to the minimum variance technique and is outlined in Dan Weimer et al. [2003; 2004]. The basic method is to find the minimum variance direction of the magnetic field in the plane orthogonal to the mean magnetic field direction. This minimum variance direction is then dotted with the difference between final position vector minus the original position vector and the quantity is divided by the minimum variance dotted with the solar wind velocity vector, which gives the propagation time. This method does not work well for shocks and minimum variance directions with tilts greater than 70 degrees of the sun-earth line. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies References: Weimer, D. R. (2004), Correction to ??Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,?? J. Geophys. Res., 109, A12104, doi:10.1029/2004JA010691. Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108, 1026, doi:10.1029/2002JA009405. |

11) | Geotail Low Energy Particle (LEP) experiment data Weimer Propagated 60 s Resolution in GSM Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Geotail/LEP/Propagated.LEP/GSM/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Geotail LEP Weimer propagated solar wind data and linearly interpolated to have the measurements on the minute at 60 s resolution data in GSM coordinates. This data set consists of propagated solar wind data that has first been propagated to a position just outside of the nominal bow shock (about 17, 0, 0 Re) and then linearly interpolated to 1 min resolution using the interp1.m function in MATLAB. The input data for this data set is a 1 min resolution processed solar wind data constructed by Dr. J.M. Weygand. The method of propagation is similar to the minimum variance technique and is outlined in Dan Weimer et al. [2003; 2004]. The basic method is to find the minimum variance direction of the magnetic field in the plane orthogonal to the mean magnetic field direction. This minimum variance direction is then dotted with the difference between final position vector minus the original position vector and the quantity is divided by the minimum variance dotted with the solar wind velocity vector, which gives the propagation time. This method does not work well for shocks and minimum variance directions with tilts greater than 70 degrees of the sun-earth line. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies References: Weimer, D. R. (2004), Correction to ??Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,?? J. Geophys. Res., 109, A12104, doi:10.1029/2004JA010691. Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108, 1026, doi:10.1029/2002JA009405. |

12) | Geotail Solar Wind Weimer Propagation Details at 1 min Resolution | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Geotail/TAP/Propagated.CPI/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Geotail Weimer propagated solar wind data using CPI and linearly interpolated time delay, cosine angle, and goodness information of propagated data at 1 min Resolution. This data set consists of propagated solar wind data that has first been propagated to a position just outside of the nominal bow shock (about 17, 0, 0 Re) and then linearly interpolated to 1 min resolution using the interp1.m function in MATLAB. The input data for this data set is a 1 min resolution processed solar wind data constructed by Dr. J.M. Weygand. The method of propagation is similar to the minimum variance technique and is outlined in Dan Weimer et al. [2003; 2004]. The basic method is to find the minimum variance direction of the magnetic field in the plane orthogonal to the mean magnetic field direction. This minimum variance direction is then dotted with the difference between final position vector minus the original position vector and the quantity is divided by the minimum variance dotted with the solar wind velocity vector, which gives the propagation time. This method does not work well for shocks and minimum variance directions with tilts greater than 70 degrees of the sun-earth line. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies References: Weimer, D. R. (2004), Correction to ??Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,?? J. Geophys. Res., 109, A12104, doi:10.1029/2004JA010691. Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108, 1026, doi:10.1029/2002JA009405. |

13) | Wind 3DP Linearly Interpolated 60 s Resolution data in GSE Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Wind/3DP/Processed/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Wind linearly interpolated to have the measurements on the minute at 60 s resolution 3DP data in GSE coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

14) | Wind 3DP Linearly Interpolated 60 s Resolution data in GSM Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Wind/3DP/Processed/GSM/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Wind linearly interpolated to have the measurements on the minute at 60 s resolution 3DP data in GSM coordinates. This data set consists of processed solar wind data that has been linearly interpolated to 1 min resolution at the position of the spacecraft using the interp1.m function in MATLAB. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies and cross correlation studies on solar wind. |

15) | Wind 3DP Weimer Propagated 60 s Resolution in GSE Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Wind/3DP/Propagated.3DP/GSE/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Wind 3DP propagated solar wind data and linearly interpolated to have the measurements on the minute at 60 s resolution data in GSE coordinates. This data set consists of propagated solar wind data that has first been propagated to a position just outside of the nominal bow shock (about 17, 0, 0 Re) and then linearly interpolated to 1 min resolution using the interp1.m function in MATLAB. The input data for this data set is a 1 min resolution processed solar wind data constructed by Dr. J.M. Weygand. The method of propagation is similar to the minimum variance technique and is outlined in Dan Weimer et al. [2003; 2004]. The basic method is to find the minimum variance direction of the magnetic field in the plane orthogonal to the mean magnetic field direction. This minimum variance direction is then dotted with the difference between final position vector minus the original position vector and the quantity is divided by the minimum variance dotted with the solar wind velocity vector, which gives the propagation time. This method does not work well for shocks and minimum variance directions with tilts greater than 70 degrees of the sun-earth line. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies References: Weimer, D. R. (2004), Correction to ??Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,?? J. Geophys. Res., 109, A12104, doi:10.1029/2004JA010691. Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108, 1026, doi:10.1029/2002JA009405. There are now two version of this data set. An off set has been found in the Wind MFI Bz component that is present after November 2004. Version 2 has this offset removed. Prof. R.L. McPherron determined the correction to be Bz = Bz - (-0.000000130406219.*odoy.*odoy + 0.000576303146.*odoy + 0.679940509 + 0.3215*cos(2*pi*(doy-171)/366)) where doy is the day of the year in units of days and odoy is the days sinces Jan 1, 1999 00:00:00 UT in units of days. |

16) | Wind 3DP Weimer Propagated 60 s Resolution in GSM Coordinates | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Resource ID:spase://VMO/NumericalData/Weygand/Wind/3DP/Propagated.3DP/GSM/PT60S | ||||||||||||||||||

| ||||||||||||||||||

Wind 3DP propagated solar wind data and linearly interpolated to have the measurements on the minute at 60 s resolution data in GSM coordinates. This data set consists of propagated solar wind data that has first been propagated to a position just outside of the nominal bow shock (about 17, 0, 0 Re) and then linearly interpolated to 1 min resolution using the interp1.m function in MATLAB. The input data for this data set is a 1 min resolution processed solar wind data constructed by Dr. J.M. Weygand. The method of propagation is similar to the minimum variance technique and is outlined in Dan Weimer et al. [2003; 2004]. The basic method is to find the minimum variance direction of the magnetic field in the plane orthogonal to the mean magnetic field direction. This minimum variance direction is then dotted with the difference between final position vector minus the original position vector and the quantity is divided by the minimum variance dotted with the solar wind velocity vector, which gives the propagation time. This method does not work well for shocks and minimum variance directions with tilts greater than 70 degrees of the sun-earth line. This data set was originally constructed by Dr. J.M. Weygand for Prof. R.L. McPherron, who was the principle investigator of two National Science Foundation studies: GEM Grant ATM 02-1798 and a Space Weather Grant ATM 02-08501. These data were primarily used in superposed epoch studies References: Weimer, D. R. (2004), Correction to ??Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,?? J. Geophys. Res., 109, A12104, doi:10.1029/2004JA010691. Weimer, D.R., D.M. Ober, N.C. Maynard, M.R. Collier, D.J. McComas, N.F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108, 1026, doi:10.1029/2002JA009405. There are now two version of this data set. An off set has been found in the Wind MFI Bz component that is present after November 2004. Version 2 has this offset removed. Prof. R.L. McPherron determined the correction to be Bz = Bz - (-0.000000130406219.*odoy.*odoy + 0.000576303146.*odoy + 0.679940509 + 0.3215*cos(2*pi*(doy-171)/366)) where doy is the day of the year in units of days and odoy is the days sinces Jan 1, 1999 00:00:00 UT in units of days. |

Showing 1 - 16 |