Search results 58 matches in 0.008 seconds
Showing 1 - 50Next

1) Alouette-2 Topside Sounder Ionogram Data maxmize
Resource ID:spase://VWO/NumericalData/Alouette2/SFS/PT31S
Start:1965-11-29 13:42:37 Observatory:Alouette 2 Cadence:31 seconds
Stop:1968-01-01 04:11:45 Instrument:Alouette 2 Sweep-Frequency Sounder Resource:NumericalData
These ionograms were digitized from the original Alouette 2 7-track analog telemetry tapes using the facilities of the former Data Evaluation Laboratory at the NASA/GSFC. This data restoration project is headed by Dr. R.F. Benson (NASA/GSFC). Ionograms were digitized at the rate of 40,000 16-bit samples/sec. This sample rate is higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 kHz provides a measurement every 25 microseconds corresponding to an apparent range (c*t/2) interval of 3.75 km. The ionograms consist of swept-frequency operation (there is no fixed-frequency operation as in ISIS-1 and ISIS-2). The time resolution between ionograms is typically 31 seconds.

2) Cassini RPWS Key Parameter 60S maxmize
Resource ID:spase://VWO/NumericalData/Cassini/RPWS/KP_PT60S
Start:1997-10-25 00:00:00 Observatory:Cassini Cadence:60 seconds
Stop:2013-06-21 01:02:16 Instrument:Cassini RPWS Resource:NumericalData
The Cassini Radio and Plasma Wave Science (RPWS) calibrated summary key parameter data set includes reduced temporal and spectral resolution spectral information calibrated in units of spectral density for the entire Cassini mission. This data set includes calibrated values binned and averaged within 1 minute by 0.1 decade spectral channels for all times during the mission including the two Venus flybys, the Earth flyby, the Jupiter flyby, interplanetary cruise, and the entire Saturn tour. Data for this data set are acquired by the RPWS Low Frequency Receiver (LFR), Medium Frequency Receiver (MFR), and High Frequency Receiver (HFR). Data are presented in a set of fixed-record-length tables. This data set is intended to provide numerical summary data which can be used in conjunction with other Cassini fields and particles key parameter data sets to establish trends, select events, or simply as a browse data set for the Cassini RPWS archive. This data set should be among the first used by a user of any of the RPWS archive as it will lead one to information required to search for more detailed or highly specialized products.

3) Cassini RPWS Low Rate Full Resolution maxmize
Resource ID:spase://VWO/NumericalData/Cassini/RPWS/LRFULL_PT32S
Start:1997-10-25 00:00:00 Observatory:Cassini Cadence:32 seconds
Stop:2013-06-21 01:02:15 Instrument:Cassini RPWS Resource:NumericalData
The Cassini Radio and Plasma Wave Science (RPWS) Low Rate Full Resolution Calibrated (RPWS_LOW_RATE_FULL) is a data set including all spectral density measurements acquired by the RPWS in units of electric or magnetic field spectral density. This data set includes calibrated values for each frequency channel for each sensor for all times during the mission including the two Venus flybys, the Earth flyby, the Jupiter flyby, interplanetary cruise, and the entire Saturn tour. Data for this data set are acquired from the RPWS Low Frequency Receiver (LFR), Medium Frequency Receiver (MFR), Medium Frequency Digital Receiver (MFDR) (which can be used to replace MFR band 2 data) and High Frequency Receiver (HFR). Data are presented in a set of tables organized so as to have fixed-length records for ease in data handling. This data set is intended to be the most comprehensive and complete data set included in the Cassini RPWS archive. A browse data set is included with these data which provides for a graphical search of the data using a series of thumbnail and full-sized spectrograms which lead the user to the particular data file(s) of interest. This data set should be among the first used by a user of any of the RPWS archive as it will lead one to information required to search for more detailed or highly specialized products.

4) Cluster Rumba WBD High Time Resolution Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster-Rumba/WBD/DS.GIF.PT30S
Start:2001-02-03 05:26:00 Observatory:Cluster FM5 (Rumba) Cadence:
Stop:2014-04-17 01:02:15 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains 30 s duration survey spectrogram plots from the WBD instrument on the Cluster spacecraft. The spectrograms are created by 1024 point FFTs and plotted with frequency on the vertical axis, increasing time on the horizontal, and color indicating power spectral density, in relative dB. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). Above the spectrogram plot are a line plot panel, followed by four status lines. The line plot panel at the top provides the gain state (0 to 75 dB, in 5 dB steps) of the instrument. The four status lines provide the following information according to the color code in the upper right corner: Data mode - whether from DSN mode (real time telemetry), or from BM2 mode (recorded onboard in Burst Mode 2) as digitally filtered or duty cycled. Antenna - the electric field (Ey or Ez) or the magnetic field (Bx or By) antenna used. Resolution - the data digitization level, which can be 1 bit, 4 bit or 8 bit. Translation - the translation from base frequency of 0 kHz. In the lower right-hand corner are the ephemeris values applicable to the start time of the plot. At the middle right-hand side are given the date and start time of the plot as well as the spacecraft number. The University of Iowa repository maintains two types of high time resolution spectrogram plots in GIF format: a ten minute (PT10M Display Cadence) and a 30 second time span (PT30S Display Cadence). Both types of files provide information on WBD gain and operational mode, the spectral data from one spacecraft, the start date and time and ephemeris data. Overview spectrograms are also available. The availability of these files depends on times of DSN and Pansak Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www-pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

5) Cluster II Rumba Wide Band Data (WBD) Prime Parameters maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/WBD/PrimeParameter/PT0.02S
Start:2001-02-04 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:0.02 seconds
Stop:2014-04-17 01:02:05 Instrument:Wide Band Data (WBD) Resource:NumericalData
The WBD (Wide Band Data) investigation is designed to provide high-resolution frequency/time spectra of plasma waves in the Earth's magnetosphere. These data files contain information on the band width, resolution, antenna angles, offsets, magnetic and electric field information. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``The Wideband Plasma Wave Investigation,'' by D. A. Gurnett et al., from which this information was obtained.

6) Cluster Salsa WBD High Time Resolution Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster-Salsa/WBD/DS.GIF.PT30S
Start:2001-02-03 05:26:00 Observatory:Cluster FM6 (Salsa) Cadence:
Stop:2014-04-17 01:02:14 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains 30 s duration survey spectrogram plots from the WBD instrument on the Cluster spacecraft. The spectrograms are created by 1024 point FFTs and plotted with frequency on the vertical axis, increasing time on the horizontal, and color indicating power spectral density, in relative dB. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). Above the spectrogram plot are a line plot panel, followed by four status lines. The line plot panel at the top provides the gain state (0 to 75 dB, in 5 dB steps) of the instrument. The four status lines provide the following information according to the color code in the upper right corner: Data mode - whether from DSN mode (real time telemetry), or from BM2 mode (recorded onboard in Burst Mode 2) as digitally filtered or duty cycled. Antenna - the electric field (Ey or Ez) or the magnetic field (Bx or By) antenna used. Resolution - the data digitization level, which can be 1 bit, 4 bit or 8 bit. Translation - the translation from base frequency of 0 kHz. In the lower right-hand corner are the ephemeris values applicable to the start time of the plot. At the middle right-hand side are given the date and start time of the plot as well as the spacecraft number. The University of Iowa repository maintains two types of high time resolution spectrogram plots in GIF format: a ten minute (PT10M Display Cadence) and a 30 second time span (PT30S Display Cadence). Both types of files provide information on WBD gain and operational mode, the spectral data from one spacecraft, the start date and time and ephemeris data. Overview spectrograms are also available. The availability of these files depends on times of DSN and Pansak Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www-pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

7) Cluster Samba WBD High Time Resolution Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster-Samba/WBD/DS.GIF.PT30S
Start:2001-02-03 05:26:00 Observatory:Cluster FM7 (Samba) Cadence:
Stop:2014-04-17 01:02:14 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains 30 s duration survey spectrogram plots from the WBD instrument on the Cluster spacecraft. The spectrograms are created by 1024 point FFTs and plotted with frequency on the vertical axis, increasing time on the horizontal, and color indicating power spectral density, in relative dB. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). Above the spectrogram plot are a line plot panel, followed by four status lines. The line plot panel at the top provides the gain state (0 to 75 dB, in 5 dB steps) of the instrument. The four status lines provide the following information according to the color code in the upper right corner: Data mode - whether from DSN mode (real time telemetry), or from BM2 mode (recorded onboard in Burst Mode 2) as digitally filtered or duty cycled. Antenna - the electric field (Ey or Ez) or the magnetic field (Bx or By) antenna used. Resolution - the data digitization level, which can be 1 bit, 4 bit or 8 bit. Translation - the translation from base frequency of 0 kHz. In the lower right-hand corner are the ephemeris values applicable to the start time of the plot. At the middle right-hand side are given the date and start time of the plot as well as the spacecraft number. The University of Iowa repository maintains two types of high time resolution spectrogram plots in GIF format: a ten minute (PT10M Display Cadence) and a 30 second time span (PT30S Display Cadence). Both types of files provide information on WBD gain and operational mode, the spectral data from one spacecraft, the start date and time and ephemeris data. Overview spectrograms are also available. The availability of these files depends on times of DSN and Pansak Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www-pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

8) Cluster Tango WBD High Time Resolution Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster-Tango/WBD/DS.GIF.PT30S
Start:2001-02-03 05:26:00 Observatory:Cluster FM8 (Tango) Cadence:
Stop:2014-04-17 01:02:14 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains 30 s duration survey spectrogram plots from the WBD instrument on the Cluster spacecraft. The spectrograms are created by 1024 point FFTs and plotted with frequency on the vertical axis, increasing time on the horizontal, and color indicating power spectral density, in relative dB. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). Above the spectrogram plot are a line plot panel, followed by four status lines. The line plot panel at the top provides the gain state (0 to 75 dB, in 5 dB steps) of the instrument. The four status lines provide the following information according to the color code in the upper right corner: Data mode - whether from DSN mode (real time telemetry), or from BM2 mode (recorded onboard in Burst Mode 2) as digitally filtered or duty cycled. Antenna - the electric field (Ey or Ez) or the magnetic field (Bx or By) antenna used. Resolution - the data digitization level, which can be 1 bit, 4 bit or 8 bit. Translation - the translation from base frequency of 0 kHz. In the lower right-hand corner are the ephemeris values applicable to the start time of the plot. At the middle right-hand side are given the date and start time of the plot as well as the spacecraft number. The University of Iowa repository maintains two types of high time resolution spectrogram plots in GIF format: a ten minute (PT10M Display Cadence) and a 30 second time span (PT30S Display Cadence). Both types of files provide information on WBD gain and operational mode, the spectral data from one spacecraft, the start date and time and ephemeris data. Overview spectrograms are also available. The availability of these files depends on times of DSN and Pansak Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www-pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

9) Cluster WBD Survey Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster/WBD/Survey.PNG.PT2H
Start:2001-02-03 05:26:00 Observatory:Cluster FM5 (Rumba) Cadence:
Stop:2014-04-17 01:02:14 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains survey spectrogram plots of varying time durations from the WBD Plasma Wave Receivers on the four Cluster spacecraft. Due to the nature of the WBD real-time operations at the DSN, data from all four spacecraft are not always available. The time span of these plots varies based on the time span of the telemetry received in real-time from the DSN and Panska Ves ground stations and can range from 30 minutes to 8 hours, 2 hours being typical. Panels are included in the overview plots for all of the spacecraft for which WBD data are available at any given time. The spectrograms are created by 1024 point FFTs and plotted with frequency in kHz on the vertical axis, increasing time on the horizontal, and color indicating the power spectral density. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. When the data shown in the overview plot are from an electric field antenna, the power spectral density is given in units of V^2/m^2/Hz. When the data shown in the overview plot are the WBD magnetic field measurements, the power spectral density is given in relative dB. The WBD antenna used is marked on the left-hand side of each plot panel, and the spacecraft name and number are provided on the right-hand side of each panel. Below the time labels on the horizontal axis, are the ephemeris values applicable to the times marked on the horizontal axis. The ephemeris values are provided for the spacecraft whose data are shown in the bottom panel of the plot, just above the time axis labels. These ephemeris values are provided only as an indication of the general location of the Cluster quartet within the magnetosphere. Due to varying spacecraft separations, the ephemeris values for the spacecraft shown in the other plot panels may be considerably different from the values given for the spacecraft in the bottom panel. At the very bottom of the page are given the date and start time of the plots. At the top of the page, the WBD mode is noted, along with the FFT length and overlap. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. There will typically be a separate survey spectrogram plot for each operating mode. The time resolution of the data shown in the plots is determined from the WBD instrument mode and FFT length. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). When data from multiple spacecraft are shown in the overview plots, the time span in which WBD data are available for each spacecraft may be different. Periods when no data were available will appear white on the overview plots. On the lower right-hand corner of the page, UIowa appears next to the date on which the plot was generated in the format YYMMDD. Please note that during operations in certain magnetospheric regions, the WBD Plasma Wave Receiver may cycle between electric and magnetic field antennas or through the 125.454 kHz, 250.908 kHz, and 501.816 kHz conversion frequencies. When the instrument cycles through different modes, separate ps overview plots are generated for each antenna or conversion frequency used over the entire duration of the operation. In these plots, only data from one mode are shown on each plot, and the data are dilated across the intervals when another mode was used. The modes used and the length of the cycling intervals are provided on the left-hand side of the ps overview plot, along with a note that the plot is not intended for publication. Please contact the WBD PI if you wish to publish or present data from periods with cyclical switching between instrument modes. Higher time resolution spectrograms are also available for each spacecraft separately. These data are presented as ten minute time span and 30 second time span GIF image files. Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at (http://www-pw.physics.uiowa.edu/cluster/) and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

10) Cluster WHISPER Combined Daily Dynamic Spectrograms maxmize
Resource ID:spase://VWO/DisplayData/Cluster/WHISPER/DS.JPG.P1D
Start:2001-01-01 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:
Stop:2014-04-17 01:02:14 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:DisplayData
These WHISPER daily dynamic spectrograms from each of the four Cluster spacecraft are plots of the received signal (the color scale indicates the voltage spectral density as Vrms Hz^-1/2) as a function of receiver frequency (on vertical axis) and time (horizontal axis). At the top of the image is the name of the instrument and date and above each plot the overflow status is indicated by a color code. Each spectrogram spans a frequency range from 2 through 80 kHz. Beneath the time labels on the horizontal axis are ephemeris data: position of the spacecraft in radial distance (Earth radii), latitude, and local time (GSE coordinates). The plots include data when the instruments are operating in both passive and active mode.

11) FAST AC Fields, ~5 sec resolution maxmize
Resource ID:spase://VWO/NumericalData/FAST/ACF/PT5S
Start:1996-08-30 02:02:17 Observatory:FAST Cadence:5 seconds
Stop:2002-10-25 00:11:32 Instrument:Electric Field and Langmuir Probe Experiment Resource:NumericalData
FAST AC Fields Key Parameter CDF files consists of AC Electric and Magnetic fields measurements spanning a range from approximately 32 Hz to 2 MHz. The time range of each file is roughly 24 hours and consists of several passes over the auroral zone of approximately 20 minute duration, the time resolution is one spin period (approximately 5s). The orbital period of FAST is 133 minutes.

12) Galileo PWS Earth Flyby Daily Dynamic Spectrograms Electric maxmize
Resource ID:spase://VWO/DisplayData/Galileo/PWS/DS.Electric.P1D
Start:1990-11-08 17:00:00 Observatory: Cadence:
Stop:1992-12-17 06:30:00 Instrument: Resource:DisplayData
These PWS daily spectrograms cover the time range around the time of the Galileo spacecraft's two Earth flybys on its way to Jupiter. This dataset contains electric field spectrograms in units of electric field spectral density (V^2/m^2/Hz) spanning 6 Hz to 5.6 MHz. An associated dataset contains magnetic field spectrograms in units of magnetic field spectral density (nT^2/Hz) spanning 6 Hz to 75 kHz. The sources of this browse data set are the High Frequency Receiver, Sweep Frequency Receiver, and Spectrum Analyzer which make up the Low Rate Science portion of the PWS. The high frequency receiver data that appears in the uppermost panel of the spectrograms are only taken from the electric field antennas. During the time interval spanned by the first Earth flyby, Galileo approached Earth from the local early morning sector, made a close approach to Earth by passing through the magnetosphere, plasmasphere, ionosphere, and finally exited the Earth system in the local late morning. During the time interval spanned by the second Earth flyby, Galileo approached Earth from the local late evening sector, made a close approach to Earth by passing through the magnetosphere, plasmasphere, ionosphere, and finally exited the Earth system near local dawn. +-----------------------------------------------------+ | Flyby 1 | | 1990 November 8 1700 UT | - dataset start | | 1990 December 8 | - Earth closest approach | | 1990 December 18 1700 UT | - dataset end | +-----------------------------------------------------+ +-----------------------------------------------------+ | Flyby 2 | | 1992 November 6 2100 UT | - dataset start | | 1992 December 8 | - Earth closest approach | | 1992 December 17 0630 UT | - dataset ends | +-----------------------------------------------------+

13) Galileo PWS Earth Flyby Daily Dynamic Spectrograms Magnetic maxmize
Resource ID:spase://VWO/DisplayData/Galileo/PWS/DS.Magnetic.P1D
Start:1990-11-08 17:00:00 Observatory: Cadence:
Stop:1992-12-17 06:30:00 Instrument: Resource:DisplayData
These PWS daily spectrograms cover the time range around the time of the Galileo spacecraft's two Earth flybys on its way to Jupiter. This dataset contains magnetic field spectrograms in units of magnetic field spectral density (nT^2/Hz) spanning 6 Hz to 75 kHz. An associated dataset contains electric field spectrograms in units of electric field spectral density (V^2/m^2/Hz) spanning 6 Hz to 5.6 MHz. The sources of this browse data set are the High Frequency Receiver, Sweep Frequency Receiver, and Spectrum Analyzer which make up the Low Rate Science portion of the PWS. The high frequency receiver data that appears in the uppermost panel of the spectrograms are only taken from the electric field antennas. During the time interval spanned by the first Earth flyby, Galileo approached Earth from the local early morning sector, made a close approach to Earth by passing through the magnetosphere, plasmasphere, ionosphere, and finally exited the Earth system in the local late morning. During the time interval spanned by the second Earth flyby, Galileo approached Earth from the local late evening sector, made a close approach to Earth by passing through the magnetosphere, plasmasphere, ionosphere, and finally exited the Earth system near local dawn. +-----------------------------------------------------+ | Flyby 1 | | 1990 November 8 1700 UT | - dataset start | | 1990 December 8 | - Earth closest approach | | 1990 December 18 1700 UT | - dataset end | +-----------------------------------------------------+ +-----------------------------------------------------+ | Flyby 2 | | 1992 November 6 2100 UT | - dataset start | | 1992 December 8 | - Earth closest approach | | 1992 December 17 0630 UT | - dataset ends | +-----------------------------------------------------+

14) Geotail PWI 24 hour dynamic spectrograms maxmize
Resource ID:spase://VWO/DisplayData/Geotail/PWI/DS.P1D
Start:1992-09-18 00:00:00 Observatory:Geotail Cadence:
Stop:2014-04-17 01:02:14 Instrument:Geotail Plasma Wave Investigation (PWI) Resource:DisplayData
Geotail PWI SFA and MCA dynamic spectrogram plots with frequency in Hz on the vertical axis and time in UT on the horizontal axis. Each file contains one spectrogram from the electric field antennas and one from the magnetic field search coils. The electric field spectrograms span the frequency range 5.62 to 24 Hz (the Multi-Channel Analyzer - MCA instrument) and 24 Hz to 800 kHz (the Sweep Frequency Analyzer - SFA instrument). The intensity values are color coded and are expressed in units of dBV/m/root-Hz. The magnetic field spectrograms also combine the MCA and SFA instruments and span the frequency range 5.62 Hz to 12.5 kHz. The intensity values are color coded and are expressed in units of dB nT/root-Hz. Each plot spans 24 hours. Beneath the time axis of the magnetic field spectrogram are spacecraft GSM coordinates for every 4 hours. Information on the instrument and antenna status is also provided above each spectrogram.

15) Geotail PWI 2 hour dynamic spectrograms maxmize
Resource ID:spase://VWO/DisplayData/Geotail/PWI/DS.PT2H
Start:1992-09-18 00:00:00 Observatory:Geotail Cadence:
Stop:2014-04-17 01:02:14 Instrument:Geotail Plasma Wave Investigation (PWI) Resource:DisplayData
Geotail PWI SFA and MCA dynamic spectrogram plots with frequency in Hz on the vertical axis and time in UT on the horizontal axis. Each file contains one spectrogram from the electric field antennas and one from the magnetic field search coils. The electric field spectrograms span the frequency range 5.62 to 24 Hz (the Multi-Channel Analyzer - MCA instrument) and 24 Hz to 800 kHz (the Sweep Frequency Analyzer - SFA instrument). The intensity values are color coded and are expressed in units of dBV/m/root-Hz. The magnetic field spectrograms also combine the MCA and SFA instruments and span the frequency range 5.62 Hz to 12.5 kHz. The intensity values are color coded and are expressed in units of dB nT/root-Hz. Each plot spans 2 hours. Information on the instrument and antenna status is also provided above each spectrogram.

16) Hawkeye Multi-Instrument Summary Plots maxmize
Resource ID:spase://VWO/DisplayData/Hawkeye/VLF/Multi.Instrument.PT51H
Start:1974-06-06 03:00:00 Observatory:Hawkeye Cadence:
Stop:1978-04-28 17:00:00 Instrument:Hawkeye VLF Resource:DisplayData
To help the user in searching through the Hawkeye data set, summary plots of the entire Hawkeye archive have been generated. Each summary plot consists of an entire orbit's worth of data from all of the instruments, along with the spacecraft position. Solar wind plasma pressure and IMF data have been added to the plots to help the user in data selection. HAWKEYE SUMMARY PLOT LAYOUT Title The orbit number is the orbit number at start of the plot time interval. Day 1 = January 1. First (top) panel Solar Wind pressure (red curve and red dots). Solar Wind IMF Bz component (in GSM) (blue dots). IMP-8 spacecraft Bz (in GSM) component (black curve). Second Panel The two numbers above the second panel are the positions of IMP-8 in degrees ( sign(y_gsm) * atan(sqrt(y_gsm^2+z_gsm^2)/x_gsm) ), at the start of and at the end of the plot time interval. Usually, if IMP-8 lies between -110 and +110 degrees it is in the solar wind. Solar Wind IMF magnetic field magnitude |B| (blue dots). IMP-8 magnetic Field magnitude |B| (black curve). Hawkeye magnetic Field magnitude |B| (red curve). Third Panel The two numbers above the third panel are: (left corner) The angle between the sun vector and spacecraft spin plane. Because the Hawkeye particle instrument's (LEPEDEA) field view is +/- 15 degrees out the the spin plane, this angle has to be less than 15 degrees in order to detect the solar wind when the spacecraft is located in the solar wind. (right corner)The spin period of the spacecraft in seconds. The electron energy-time spectrogram averaged over the solid angle sampled by LEPEDEA is plotted. Fourth Panel The ion energy-time spectrogram averaged over the solid angle sampled by LEPEDEA Fifth Panel The frequency-time spectrogram of the magnetic field as measured by the loop antenna The electron cyclotron frequency (white curve) as determined by the on-board magnetometer Sixth (bottom) Panel The electric field frequency-time spectrogram as measured by the dipole antenna The electron cyclotron frequency (white curve) as determined by the on-board magnetometer Time Axis Labels The universal time (hr:mm). The spacecraft position in Earth radii (RE) in units of RE. The spacecraft position in magnetic latitude (MLAT) in units of degrees. The spacecraft position in magnetic local time (MLT) in units of degrees. The spacecraft position in X-GSM in units of RE.

17) Hawkeye Electric and Magnetic Field Radio Frequency Spectrum Analyzer High Time Resolution maxmize
Resource ID:spase://VWO/NumericalData/Hawkeye/VLF/PT22S
Start:1974-06-08 06:45:10 Observatory:Hawkeye Cadence:22 seconds
Stop:1978-04-26 15:59:05 Instrument:Hawkeye VLF Resource:NumericalData
The CDF file contains approximately 22 second time resolution Electric and Magnetic field data, average magnetic field magnitude, and orbital position data from Hawkeye 1. The VLF experiment measured electric and magnetic fields using a 42.45-m electric dipole (tip-to-tip) which extended perpendicular to the spin axis and a search coil antenna deployed 1.58 m from the spacecraft. The electric field spectrum measurements were made in 16 logarithmically spaced frequency channels extending from 1.78 Hz to 178 kHz, and dc electric fields were also measured. The bandwidth of these channels varied from 7.5% to 30% depending on center frequency. Channel sensitivity and dynamic range were 1E-6 V/m and 100 dB, respectively. A wideband receiver was also used, with two selectable bandwidth ranges: 0.15 to 10 kHz or 1 to 45 kHz. The magnetic field spectrum was measured in eight discrete, logarithmically spaced channels from 1.78 Hz to 5.62 kHz. The bandwidth of these channels varied from 7.5% to 30% depending on frequency. The dynamic range was 100 dB, and the sensitivity ranged from 0.1 nT at 1.78 Hz to 3.4E-4 nT at 5.62 kHz. The wideband receiver described above could be used with the magnetic antenna. Each discrete channel was sampled once every 11.52 s.

18) RPI Daily Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/IMAGE/RPI/DS.P1D
Start:2000-04-21 20:24:42 Observatory:IMAGE Cadence:5 minutes
Stop:2005-12-18 07:50:00 Instrument:Radio Plasma Imager (RPI) Resource:DisplayData
Collection of RPI Daily Dynamic Spectrogram plots at NASA GSFC, covering complete mission period from 2000-04-21 to 2005-12-18. Dynamic Spectrograms present the time history of natural radio emissions in space between 3 and 1009 kHz while the IMAGE spacecraft orbits the Earth. This operating frequency range was selected by the RPI team to provide an optimal temporal resolution to the wave observations. Each image is a daily plot of the voltage spectral density of received signal (color scale) as function of operating frequency (vertical axis) and time (horizontal axis). Commonly used in the analysis of noise generators, spectral density is a frequency-dependent characteristic that describes how much power is generated by the emission source in a 1 Hz bandwidth. RPI Dynamic Spectograms plot a Voltage Spectral Density, which is root of power spectral density, measured in [V/root-Hz] units. Note that conversion of antenna voltage to electric field strength depends on effective length of receive antennas, and such conversion is not performed here. RPI is capable of detecting input radio emissions above its noise floor of 5 nV/root-Hz, which is determined by the internal white noise of the RPI antenna pre-amplifiers.

19) RPI Dynamic Spectrogram data in CDF at NASA CDAWeb maxmize
Resource ID:spase://VWO/NumericalData/IMAGE/RPI/DS.PT5M
Start:2000-04-21 20:24:42 Observatory:IMAGE Cadence:5 minutes
Stop:2005-12-18 07:50:00 Instrument:Radio Plasma Imager (RPI) Resource:NumericalData
RPI passive wave measurement capturing voltage spectral density of the radio emissions in space as a function of frequency, typically between 3 and 1009 kHz. This operating frequency range was selected by the RPI team to provide optimal temporal resolution of the wave observations. Commonly used in the analysis of noise generators, spectral density is a frequency-dependent characteristic that describes how much power is generated by the emission source in a 1 Hz bandwidth. The original description of emissions was done in terms of thermal noise measurements, though the same approach also applies to non-thermal emissions such as AKR. CDF_DS_PT5M stores calibrated data from all three RPI antennas X, Y, and Z individually and a combined X+Y antenna channel. The data are presented as the Voltage Spectral Density (VSD), which is the root of power spectral density, measured in [V/root-Hz] units. Note that conversion of antenna voltage to electric field strength depends on the effective length of the receive antenna, and such conversion is not performed here. (See spase://SMWG/Instrument/IMAGE/RPI for a time history of the lengths of the three mutually orthogonal RPI dipole antennas.) RPI is capable of detecting input radio emissions above its noise floor of 5 nV/root-Hz, which is determined by the internal white noise of the RPI antenna pre-amplifiers. The VSD in RPI spectrogram data is presented in dB relative to 1 V/root-Hz (logarithmic scale), units of dB(V/root-Hz). The RPI instrument noise floor is 5 nV/root-Hz = -166 dB(V/root-Hz) at the receiver input. Software suggested by the science team for CDF file visualization: (1) Plotting tool at the CDAWeb portal, (2) For analysis beyond static image inspection, including color scale optimization, zooming, text export, alternative data representations in physical units, detailed frequency and time information, overlaid model fpe and fce graphs, and EPS quality figures, use BinBrowser software at UML, http://ulcar.uml.edu/rpi.html

20) RPI Plasmagram data in CDF at NASA CDAWeb maxmize
Resource ID:spase://VWO/NumericalData/IMAGE/RPI/PGM.CDF.PT5M
Start:2000-03-26 07:51:50 Observatory:IMAGE Cadence:5 minutes
Stop:2005-12-18 07:40:47 Instrument:Radio Plasma Imager (RPI) Resource:NumericalData
Software suggested by the science team for CDF file visualization: (1) Plotting tool at the CDAWeb portal, (2) For analysis beyond static image inspection, including color scale optimization, zooming, text export, alternative data representations in physical units, detailed frequency and time information, overlaid model fpe and fce graphs, and EPS quality figures, use BinBrowser software at UML, http://ulcar.uml.edu/rpi.html

21) ISEE-3 Radio Mapping Experiment Demodulated - 1.5 sec resolution maxmize
Resource ID:spase://VWO/NumericalData/ISEE3/RadioMapping/DEMOD.PT1.5S
Start:1978-08-13 08:31:28 Observatory: Cadence:1.5 seconds
Stop:1987-01-23 11:13:38 Instrument: Resource:NumericalData
The following is extracted from "User Guide for ISEE-3 Radio Mapping Experiment CD-ROM Data" the original document is available via the Information URL below. The ISEE-3 Radio Mapping Experiment is designed to detect and measure radio bursts from the Sun, the interplanetary medium, and the Earth's magnetosphere, at frequencies from 30 kHz to 2 MHz. It is a collaboration of the Observatory of Paris-Meudon and the Goddard Space Flight Center; the Principal Investigator is Jean-Louis Steinberg. The experiment determines the direction of sources and estimates their apparent angular sizes using two dipole antennas. One dipole, the shorter of the two, is along the spin axis of the satellite, while the second dipole is perpendicular to the spin axis and is therefore carried around by the rotation of the satellite. Each of the monopoles making up the spin-axis dipole can be extended to 7m, whereas each monopole making up the dipole in the spin plane is 45m long. The signal received by the spinning dipole is modulated, being strongest when the dipole is perpendicular to the direction of the source. The phase of the spin modulation provides information on the direction of the source, projected onto the plane in which the dipole is spinning, and the amplitude of the modulation determines the angular size of the source as a function of its elevation above or below the spin plane. The additional information provided by the spin-axis dipole helps determine whether the source is above or below the spin plane, and its elevation. Detailed Description of the Data Acquisition The experiment is designed to make a series of measurements at each frequency (listed in Table 2-1), covering one-half spin. Such a series is called a step. The specifics of the data are described below. In this document, the spin-axis dipole is called the Z-dipole, because the spin axis is labeled the z-axis of the satellite-based coordinate system. The other dipole is called the S-dipole, because it is spinning. ISEE-3 has two spinning dipoles, called U and V. Only the V dipole was used to acquire radio data. Table 2-1. ISEE-3 Radio Mapping Experiment Frequencies +------------------------------------+ | Channel | Receiver Freq. (Khz) | | No. | Broad | Narrow | |===========|=========|==============| | 1 |1980 | 1000 | | 2 |1000 | 466 | | 3 | 513 | 290 | | 4 | 360 | 188 | | 5 | 233 | 145 | | 6 | 160 | 110 | | 7 | 123 | 80 | | 8 | 94 | 66 | | 9 | 72 | 56 | | 10 | 60 | 47 | | 11 | 50 | 36 | | 12 | 41 | 30 | +------------------------------------+ Demodulating the data The direction to the source and the source strength are determined from the spin-modulated S samples and the Z sample by the procedure described in the following section. The linear least-squares solution provides a despun source amplitude A, which is its maximum amplitude, observed when the S dipole is "broadside" to the source, the azimuth angle with respect to the Sun of the source center in the spin plane, and a measure of the modulation of the source due to the changing orientation of the S dipole, called alpha. The standard deviation of the least-squares fit and the uncertainties in the three parameters are also calculated. Comparison of the Z sample and A with the modulation index alpha permits to evaluate the source radius and its elevation from the spin plane. Data file contents There are 3 different sets of data files that are of potential interest to new users - 1.5 sec modulated data, 108 second averages, and 1.5 sec demodulated data. The 1.5 sec modulated data files contain individual data samples, calibrated in units of antenna temperature. The spin modulation has not been removed from these files. The 108 sec average files are simple averages of the 1.5 sec modulated data as a function of frequency. (Note that the average is done in log space, I.e., mean(log(antenna temperature)).) Finally, the 1.5 sec demodulated data file contains the parameters A, alpha, and azimuth. The demodulated data file is the file that most users will want to use. Contents of the ISEE-3 Radio 1.5 sec DEMOD Record +--------------------------------------------------------------------+ | VARIABLE | DIM| # | DESCRIPTION | |==========|====|=======|============================================| |MDATE | | |Julian date of record (YYDDD) | |MHMS | | |Time of midpoint of record in hhmmss | |MSEC | | |Time of midpoint or record in msecs | |NFREQ | | |Frequency channel 1-12 | |ADSP |4 |1 |Despun SB amplitude (or SN for Mode3) | | |2 | |Despun SN amplitude if mode 1 | | |3 | |Log of SB as log TA | | |4 | |Log SN if mode 1, else 0 | |ALPHA |2 |1 |Modulation Index for B(or N if mode3) | | | |2 |Modulation Index for N if mode 1, else 0 | |PHI |2 | |Source longitude(increasing to west of sun) | | | | |for B, N in degrees (-90 - 90) | |Z |4 | |Average Z amplitude - elements as for ADSP | |PHASE |2 | |Phase(volts) for the first input record used| | | | |in group for B, N(or both B for mode 2, both| | | | |N for mode 3) | |PHANG |2 | |Phase sun angle for B,N in radians | |ELEV |2 | |Calculated elevation angle for B,N | |RAD |2 | |Calculated source radius for B,N in degrees | |BW |4 |1 |Background value used for SB in calculating | | | | |ELEV and RAD | | | |2 |Background value used for SN (mode 1) | | | |3 |Background value used for ZB | | | |4 |Background value for ZN if mode 1 | |ST |2 | |Fractional standard deviations of least | | | | |squares fit for B,N | |SIGA |3x2 | |Uncertainties in parameters for least | | | | |squares fit | | | |1x |Uncertainty in mean SB, SN amplitude | | | |2x |Uncertainty in alpha for B,N | | | |3x |Uncertainty in PHI for B, N in degrees | |NSAMP | | |Number of S samples in fit | |IQUAL |2 | |Quality of analysis B, N | |KDATE | | |Julian date of processing | |MODE | | |Data mode | |SPINP | | |Spin period in msec | |GSE |3 | |XYZ coordinates Geocentric solar ecliptic | | | | |in meters | |SPARE |10 | |Spares | +--------------------------------------------------------------------+

22) ISIS-1 Topside Sounder Ionograms maxmize
Resource ID:spase://VWO/NumericalData/ISIS1/SFS/Ionogram.PT29S
Start:1969-01-30 14:50:12 Observatory:ISIS 1 Cadence:24 seconds
Stop:1983-12-30 15:19:33 Instrument:ISIS1 Swept-Frequency Sounder Resource:NumericalData
These ionograms were digitized from the original ISIS-1 7-track analog telemetry tapes using the facilities of the former Data Evaluation Laboratory at the NASA/GSFC. This data restoration project is headed by Dr. R.F. Benson (NASA/GSFC). Ionograms were digitized at the rate of 40,000 16-bit samples/sec. This sample rate is higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 kHz provides a measurement every 25 microseconds corresponding to an apparent range (c*t/2) interval of 3.75 km. Each ionogram consists of a fixed-frequency and and a swept-frequency portion. The time resolution between ionograms is typically 29 seconds.

23) ISIS-2 Topside Sounder Ionograms maxmize
Resource ID:spase://VWO/NumericalData/ISIS2/SFS/Ionogram.PT22S
Start:1969-01-30 14:50:12 Observatory:ISIS 2 Cadence:22 seconds
Stop:1983-12-30 15:19:33 Instrument:ISIS2 Swept-Frequency Sounder Resource:NumericalData
These ionograms were digitized from the original ISIS-2 7-track analog telemetry tapes using the facilities of the former Data Evaluation Laboratory at the NASA/GSFC. This data restoration project is headed by Dr. R.F. Benson (NASA/GSFC). Ionograms were digitized at the rate of 40,000 16-bit samples/sec. This sample rate is higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 kHz provides a measurement every 25 microseconds corresponding to an apparent range (c*t/2) interval of 3.75 km. Ionograms with this sample rate are designated as "full" ionograms because they have the full 3.75 km apparent-range resolution. The ionograms used for most analysis, and those available from CDAWeb, were produced by averaging every four samples of the sounder-receiver video amplitude output to yield an average value every 100 microseconds corresponding to an apparent-range resolution of 15 km. These ionogram files are referred to as "average" files with standard resolution. Each ionogram consists of a fixed-frequency and and a swept-frequency portion. The time resolution between ionograms is typically 14 or 22 seconds depending on the frequency sweep range.

24) Polar Plasma Wave Instrument, Low Frequency Waveform Receiver, ~0.01 sec resolution fields maxmize
Resource ID:spase://VWO/NumericalData/POLAR/PWI/LFWR.PT0.01S
Start:1996-03-25 00:00:16 Observatory:POLAR Cadence:0.01 seconds
Stop:1997-09-16 16:52:55 Instrument:Polar Plasma Waves Investigation (PWI) Resource:NumericalData
The Low-Frequency Waveform Receiver (LFWR) is designed to provide an extension of the High Frequency Waveform Receiver into the frequency range below 25 Hz. The LFWR consists of six parallel low-pass filters connected to the three orthogonal electric field sensors and to the triaxial search coils. The input signals are band limited to a frequency range from 0.1 to 25 Hz and are sam- pled by a 12-bit analog-to-digital converter. The six LFWR channels are sampled simultaneously at a rate of 100 samples s-1. The dynamic range of the LFWRis approximately 72 dB with fixed gain. An FFT on 256 or 464 values, depending on the snapshot size, was used in calibrating the data; i.e., perform FFT, calibrate andin frequency domain, perform inverse FFT to get calibrated time series. Coordinate System Used: local magnetic field-aligned, a spacecraft centered coordinate system where Z is parallel to the local B-field determined from Polar MFE, X points outward and lies in the plane defined by the Z-axis and the radial vector from the earth to the spacecraft, and Y completes a right-handed system and points eastward. The X- and Z-axes are contained in the north-south plane. The three orthogonal magnetic field components are given in units of nT/Sec rather than nT because the response of the searchcoils across the passband is not flat. In order to obtain units of nT, the data would need to be digitally filtered to the frequency of interest and then integrated over time. Integrating over the entire passband could possibly destroy the resolution of the higher frequency components since the low frequency noise, if present, will dominate. Data are bandpass filtered. The valid range of data in the frequency domain is from 0.5 to 22.5 Hz. Reference:..Gurnett, D.A. et al, The Polar plasma wave instrument, Space Science Reviews, Vol. 71, pp. 597-622, 1995.

25) Polar PWI MCA Survey Spectrograms maxmize
Resource ID:spase://VWO/DisplayData/POLAR/PWI/MCA.DS.P1D
Start:1996-03-25 00:00:00 Observatory:POLAR Cadence:
Stop:1997-09-16 17:00:00 Instrument:Polar Plasma Waves Investigation (PWI) Resource:DisplayData
The Polar PWI Multichannel Analyzer (MCA) collected data from March 1996 to September 1997. The MCA data has very good time resolution (~1 s) but relatively poor frequency resolution. An electric field measurement covers 5.6 Hz to 311 kHz in 20 channels logarithmically spaced. The magnetic field measurements cover a range from 5.6 Hz to 10 kHz in 14 channels logarithmically spaced. Each file consists of two plots. Each plot contains the power spectral density (color scale) of received signal (upper plot: electric (V^2 m^-2 Hz^-1), lower plot: magnetic (nT^2 Hz^-1) ) as a function of operating frequency (in a logarithmic scale on vertical axis) and time (horizontal axis). At the top of each plot is a title indicating the Instrument, Receiver and Antenna used along with the time span for the spectrogram. Overlaid on each image is a trace of the electron gyrofrequency. Beneath the time labels on the horizontal axis of the lower plot are ephemeris data: position of the spacecraft in radial distance (Earth radii), geomagnetic latitude, magnetic local time, and McIlwain L-shell. Overlaid on each image is a trace of the electron gyrofrequency. Reference: Gurnett, D.A. et al, The Polar plasma wave instrument, Space Science Reviews, Vol. 71, pp. 597-622, 1995.

26) Polar Plasma Wave Instrument, Multichannel Analyzer - 1.3 sec resolution fields maxmize
Resource ID:spase://VWO/NumericalData/POLAR/PWI/MCA.PT1.3S
Start:1996-03-25 00:00:00 Observatory:POLAR Cadence:1.3 seconds
Stop:1997-09-16 17:00:00 Instrument:Polar Plasma Waves Investigation (PWI) Resource:NumericalData
The PO_H0_PWI Multichannel Analyzer (MCA) CDF files provide good time resolution with relatively poor frequency resolution. An electric field measurement covers 5.6 Hz to 311 kHz in 20 channels logarithmically spaced. The magnetic field measurements cover a range from 5.6 Hz to 10 kHz in 14 channels logarithmically spaced. Reference: Gurnett, D.A. et al, The Polar plasma wave instrument, Space Science Reviews, Vol. 71, pp. 597-622, 1995. Note: The electron cyclotron frequencies are derived from the following: Fce = 0.028 kHz*B, where B is the magnitude of the ambient magnetic field measured in nT.

27) Polar PWI SFR-A Daily Dynamic Spectrograms maxmize
Resource ID:spase://VWO/DisplayData/POLAR/PWI/SFR.A.DS.P1D
Start:1996-03-25 00:00:00 Observatory:POLAR Cadence:
Stop:1997-09-16 17:00:00 Instrument:Polar Plasma Waves Investigation (PWI) Resource:DisplayData
The Polar Sweep Frequency Receiver-A (SFR-A) made use of either the Eu (130 m, spin-plane) or Ez (14 m, spin axis) two-sphere electric dipole antennas. Between March 25, 1996 and May 26, 1996, the Eu antenna was the default antenna, from May 27, 1996 through February 9, 1997 the Ez antenna was used and from February 10, 1997 until September 17, 1997 the SFR-A returned to using the Eu antenna. The SFR-A receiver spanned the frequency range from 26 Hz to 808 kHz in 5 bands: 26-200 Hz, 0.2 - 1.6 kHz, 1.7 - 12.6 kHz, 13-100 kHz, 100-808 kHz. Each image is a daily plot of the power spectral density (V^2 m^-2 Hz^-1) of received signal (color scale) as a function of operating frequency (in a logarithmic scale on vertical axis) and time (horizontal axis). At the top of each plot is a title indicating the Instrument, Receiver and Antenna used followed by the time span for the spectrogram. Beneath the time labels on the horizontal axis are ephemeris data: position of the spacecraft in radial distance (Earth radii), geomagnetic latitude, magnetic local time, and McIlwain L-shell. Overlaid on each image is a trace of the electron gyrofrequency.

28) Polar Plasma Wave Instrument, Sweep Frequency Receivers A and B - 2 sec resolution fields maxmize
Resource ID:spase://VWO/NumericalData/POLAR/PWI/SFR.AB.PT2S
Start:1996-03-25 00:00:00 Observatory:POLAR Cadence:2 seconds
Stop:1997-09-16 17:00:00 Instrument:Polar Plasma Waves Investigation (PWI) Resource:NumericalData
The PO_H1_PWI CDF files contain spectral densities of magnetic and electric field measurements from the Sweep Frequency Receiver-A and B. These files also contain correlation, electron cyclotron frequency, upper hybrid frequency and electron number density data. A full frequency sweep for the SFR takes about 33 seconds. From about 12.5 kHz to 800 kHz a full frequency spectrum can be obtained every 2.4 sec in the log mode. There are 224 SFR frequency bands, logarithmically spaced. When SFR_MODE is Linear, the 448 linear frequency bands are mapped to 224 logarithmic bands. The Polar Sweep Frequency Receiver-A (SFR-A) made use of either the Eu (130 m, spin-plane) or Ez (14 m, spin axis) two-sphere electric dipole antennas. Between March 25, 1996 and May 26, 1996, the Eu antenna was the default antenna, from May 27, 1996 through February 9, 1997 the Ez antenna was used and from February 10, 1997 until September 17, 1997 the SFR-A returned to using the Eu antenna. The SFR-A receiver spanned the frequency range from 26 Hz to 808 kHz in 5 bands: 26-200 Hz, 0.2 - 1.6 kHz, 1.7 - 12.6 kHz, 13-100 kHz, 100-808 kHz. The Polar PWI Sweep Frequency Receiver-B (SFR-B) collected data from March 1996 to September 1997. The SFR-B used the magnetic loop antenna (mounted on a 6m boom and oriented parallel to the Eu antenna). The SFR-B receiver spanned the frequency range from 26 Hz to 808 kHz in 5 bands: 26-200 Hz, 0.2 - 1.6 kHz, 1.7 - 12.6 kHz, 13-100 kHz, 100-808 kHz.

29) Polar PWI SFR-B Daily Dynamic Spectrograms maxmize
Resource ID:spase://VWO/DisplayData/POLAR/PWI/SFR.B.DS.P1D
Start:1996-03-25 00:00:00 Observatory:POLAR Cadence:
Stop:1997-09-16 17:00:00 Instrument:Polar Plasma Waves Investigation (PWI) Resource:DisplayData
The Polar PWI Sweep Frequency Receiver-B (SFR-B) collected data from March 1996 to September 1997. The SFR-B used the magnetic loop antenna (mounted on a 6m boom and oriented parallel to the Eu antenna). The SFR-B receiver spanned the frequency range from 26 Hz to 808 kHz in 5 bands: 26-200 Hz, 0.2 - 1.6 kHz, 1.7 - 12.6 kHz, 13-100 kHz, 100-808 kHz. Each image is a daily plot of the power spectral density (nT^2 Hz^-1) of received signal (color scale) as a function of operating frequency (in a logarithmic scale on vertical axis) and time (horizontal axis). At the top of each plot is a title indicating the Instrument, Receiver and Antenna used followed by the time span for the spectrogram. Beneath the time labels on the horizontal axis are ephemeris data: position of the spacecraft in radial distance (Earth radii), geomagnetic latitude, magnetic local time, and McIlwain L-shell. Overlaid on each image is a trace of the electron gyrofrequency.

30) Polar TIMAS H0 High-resolution Level 1 Data maxmize
Resource ID:spase://VMO/NumericalData/POLAR/TIMAS/H0_PT12S
Start:1996-03-17 00:03:19 Observatory:POLAR Cadence:12 seconds
Stop:2004-04-03 09:04:47 Instrument:Toroidal Imaging Mass-Angle Spectrograph (TIMAS) Resource:NumericalData
Mass resolved ion energy angle spectra covering nearly the full 4pi solid angle and the energy range 15 eV/q to 33 eV/q. H+, O+, He+ and He++ number fluxes and statistical uncertainties processed by the TIMAS science team. Data acquired with various angular and energy resolutions are combined here. Data Quality and other indicators are provided to allow selection of high resolution data (PA_status(ion)=0 and Energy_status(ion)=0 ) and High Quality data (Quality=0). See caveats for the following variables for more detailed information: Quality, PA_status, Energy_status Bcr, Fec, Even_odd, Energy_Range_ID and Spins. Reference:E.G. Shelley et al., The Toroidal Imaging Mass-Angle Spectrograph (TIMAS) for the Polar Mission, Sp. Sci. Rev, Vol 71, pp 497-530, 1995. Version 0: December, 1997 Version 1: July, 1998 Version 2: December, 2000 Algorithm improved to more accurately subtract backgrounds arising from spill over from H+ into He++ channel and other sources. Fill data are now inserted for limited energy and pitch angle ranges for Flux_H Flux_O Flux_He_1 and Flux_He_2 variables. The meanging of values of the of Quality variable was slightly modified. Version 3: June, 2002 Algorithm for V_02 had an error that resulted in under estimation of fluxes in high count regions, i.e. the cusp/cleft and radiation belts. V_03 corrects this error and has been expanded to include calculation of fluxes obtained after December 8, 1998, when TIMAS had a damaging high voltage breakdown that resulted in reduced sensitivity.

31) Polar TIMAS H2 Level 1 Ion Upflowing Fluxes Data maxmize
Resource ID:spase://VMO/NumericalData/POLAR/TIMAS/H2_PT12S
Start:1996-03-17 00:03:25 Observatory:POLAR Cadence:12 seconds
Stop:1998-12-08 22:55:45 Instrument:Toroidal Imaging Mass-Angle Spectrograph (TIMAS) Resource:NumericalData
H+, O+, He+ and He++ upflowing fluxes and statistical uncertainties processed by the TIMAS science team.These data were used in preparing several papers, see Information URLs. Includes also non-TIMAS Data: UT, altitude, invariant latitude, L shell, magnetic local time, geomagnetic latitude (signed - n/s hemisphere), average magnetic field vector in GSM coordinates at Polar (uses KH's co-ord conversion code), spacecraft potential from EFI data base, solar zenith angles at each end of the field line, time delayed solar wind parameters from WIND (Using KH's database) interpolated across data gaps of less than 10 minutes, IMF in GSM, solar wind dynamic pressure (nPa), solar wind density (/cc), solar wind velocity (km/sec). This is a summary data base.It does not contain detailed energy step and pitch angle information for each data point. Extends over all altitudes, invariant latitudes and MLT. Below altitude of 4.0 Re 2 spin resolution (12s), above altitude of 4.0 Re 4 spin resolution (24s). Reference:E.G. Shelley et al., The Toroidal Imaging Mass-Angle Spectrograph (TIMAS) for the Polar Mission, Sp. Sci. Rev, Vol 71, pp 497-530, 1995.

32) Polar TIMAS K1 Key Parameter data maxmize
Resource ID:spase://VMO/NumericalData/POLAR/TIMAS/K1_PT96S
Start:1999-06-07 00:09:31 Observatory:POLAR Cadence:96 seconds
Stop:2008-04-16 13:22:28 Instrument:Toroidal Imaging Mass-Angle Spectrograph (TIMAS) Resource:NumericalData
H+, O+, He+ and He++ number fluxes for survey purposes only Reference:E.G. Shelley et al., The Toroidal Imaging Mass-Angle Spectrograph (TIMAS) for the Polar Mission, Sp. Sci. Rev, Vol 71, pp 497-530, 1995. Version 0: June, 2001

33) Polar TIMAS K2 Mass Spectral Data maxmize
Resource ID:spase://VMO/NumericalData/POLAR/TIMAS/K2_PT192S
Start:1996-03-16 12:47:36 Observatory:POLAR Cadence:192 seconds
Stop:2006-05-28 23:57:58 Instrument:Toroidal Imaging Mass-Angle Spectrograph (TIMAS) Resource:NumericalData
Mass spectra count rates for survey purposes only from the POLAR TIMAS instrument. The mass spectral data product consists of 64 mass steps covering the full detector range, for each of 6 large solid angles, for 8 selected energy steps. The data product is accumulated for 2, 4, 8, 16, or 32 spin (6 s) periods. Because of telemetry restrictions only selected data products were telemetered to the ground. The 6 angular bins cover the full instrumental range and nearly 4pi steradians. Two of the look directions are centered on the spacecraft spin axis. For the first part of the mission, the spin axis was orbit normal and the pitch angles sampled in these look directions are near 90 degrees. The other 4 look directions are in the spin plane. Data are de-spun on board based on the spin rate and time of the "sun pulse". The digital data product provides the center pitch angle of each of the 6 look directions and an estimate of the variation of the pitch angle during the accumulation time. Reference: E.G. Shelley et al., The Toroidal Imaging Mass-Angle Spectrograph (TIMAS) for the Polar Mission, Sp. Sci. Rev, Vol 71, pp 497-530, 1995.

34) STEREO WAVES (SWAVES) PDF Dynamic Spectrogram Plots both Ahead and Behind s/c maxmize
Resource ID:spase://VWO/DisplayData/STEREO/SWAVES/DS.Color.PDF.P1D
Start:2006-10-27 20:24:42 Observatory:STEREO A Cadence:1 minute
Stop:2014-04-17 01:02:15 Instrument:STEREO-A Waves (SWAVES) Resource:DisplayData
This dataset contains 24 hour duration dynamic spectrogram plots from the combined STEREO A and B Waves instrument. The plots are provided in several file formats (PNG, Postscript and PDF) and there are renditions in color and grayscale with and without additional lines of time series data indicating the instrument operating status. These plots all reside within the same directory structure subdivided by year. The "new" subdirectory contain plots at a higher resolution but currently are not available for dates early in the mission. These data consist of output from the SWAVES HFR and LFR receivers. ? the High Frequency Receivers (HFR) - for spectral analysis and direction finding of radio noise generated from a few solar radii (16 MHz) to about half an Astronomical Unit (125 kHz) ? the Low Frequency Receiver (LFR) - for spectral analysis and direction finding from about half an Astronomical Unit (160 kHz) to one AU (2.5 kHz).

35) STEREO WAVES (SWAVES) Radio Intensity Spectra, both Ahead and Behind s/c maxmize
Resource ID:spase://VWO/NumericalData/STEREO/SWAVES/DS.Combined.PT1M
Start:2006-10-27 20:24:42 Observatory:STEREO A Cadence:1 minute
Stop:2014-04-17 01:02:16 Instrument:STEREO-A Waves (SWAVES) Resource:NumericalData
The CDF file contains 1 minute averaged radio intensity data from both the Ahead and Behind s/c. A description of the STEREO/WAVES instrument is provided in: Bougeret, J.L, et al. (2008), S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission, Space Science Reviews, 136, 487-528. The STEREO / WAVES (SWAVES) instruments provide unique and critical observations for all primary science objectives of the STEREO mission, the generation of CMEs, their evolution, and their interaction with Earth's magnetosphere. SWAVES can probe a CME from lift-off to Earth by detecting the coronal and interplanetary (IP) shock of the most powerful CMEs, providing a radial profile through spectral imaging, determining the radial velocity from ~2 RS (from center of sun) to Earth, measuring the density of the volume of the heliosphere between the sun and Earth, and measuring important in situ properties of the IP shock, magnetic cloud, and density compression in the fast solar wind stream that follows. SWAVES measures the fluctuation electric field present on three orthogonal monopole antennas mounted on the back (anti-sunward) surface of the spacecraft. Each monopole antenna unit is a 6 m long Beryllium-Copper (BeCu) ?stacer? spring. The three units deploy from a common baseplate that also accommodates the preamplifier housing. The 6 m length was chosen to put the antenna quarter-wave resonance near the top of the SWAVES HFR2 frequency band. These data consist of output from the SWAVES HFR and LFR receivers. ? the High Frequency Receivers (HFR) - for spectral analysis and direction finding of radio noise generated from a few solar radii (16 MHz) to about half an Astronomical Unit (125 kHz) ? the Low Frequency Receiver (LFR) - for spectral analysis and direction finding from about half an Astronomical Unit (160 kHz) to one AU (2.5 kHz).

36) THEMIS-A: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/A/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-A Cadence:4 seconds
Stop:2014-04-17 01:01:31 Instrument:THEMIS-A Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

37) THEMIS-A: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/A/FFT/PT0.0556S
Start:2007-02-24 00:00:00 Observatory:THEMIS-A Cadence:0.0556 seconds
Stop:2014-04-17 01:01:31 Instrument:THEMIS-A Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal | Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 9 June 2008: Particle burst spectra resolution increased from 16 to 64 bins and cadence slowed from 4 Hz to 1 Hz for closer analysis of spectral features. N/A: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. 15 Aug 2008: E34DC and E56DC inputs switched to E34AC and E56AC to reduce impact of wake fields on FFT spectral measurements. 15 Oct 2008: Particle burst spectra resolution reduced from 64 to 32 bins and the rate increased from 1 Hz to 2 Hz; a response to noise from plasma wake fields in the 64 bin spectra. Table 3: Instrument-Spacecraft Physical Configuration Instrument | Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

38) THEMIS-A: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/A/SST/PT3S
Start:2007-03-14 01:00:00 Observatory:THEMIS-A Cadence:3 seconds
Stop:2014-04-17 01:01:33 Instrument:THEMIS-A: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). Resource:NumericalData
THEMIS-A: The Solid State Telescope (SST) measures the incoming intensity (flux per solid angle) of superthermal electrons and ions. The spacecraft is fitted with two units (heads), each SST unit has two pairs of opposing ion and electron sensors. Each single sensor covers an angle of 36 degrees. The units are oriented such that one pair is always centered in the rotation plane, the other oriented at a maximum angle of 54 degrees off the plane. Each pair of units are oriented opposite each other allowing both ion and electron sensors to sweep out a maximum of 92% of the sky (45x45 degree required Elevation by Azimuth FOV, 108x22 raw) . The ion and electron sensors primarily measure particles between 30-300 keV and 30-100 keV respectively with a maximum capability of 20-6000 keV and 25-1000 keV. Full distribution data is measured over 128 angles and 16 energy bins, reduced distribution uses 6 angles and 16 energy bins, and burst mode data has 64 angles in 16 energy bins. Matched and paired electron broom magnets produce quadrapole fields reducing magnetic contamination. A mechanical attenuator is used to increase the instruments dynamical range avoiding oversaturation near the plasma sheet edge.

39) THEMIS-B: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/B/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-B Cadence:4 seconds
Stop:2014-04-17 01:01:28 Instrument:THEMIS-B Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

40) THEMIS-B: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/B/FFT/PT0.0556S
Start:2006-06-26 18:30:23 Observatory:THEMIS-B Cadence:0.0556 seconds
Stop:2014-04-17 01:01:28 Instrument:THEMIS-B Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 30 June - 3 July 2008: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. Table 3: Instrument-Spacecraft Physical Configuration Instrument Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM: *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

41) THEMIS-B: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/B/SST/PT3S
Start:2007-03-14 01:00:00 Observatory:THEMIS-B Cadence:3 seconds
Stop:2014-04-17 01:01:30 Instrument:THEMIS-B: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). Resource:NumericalData
THEMIS-B: The Solid State Telescope (SST) measures the incoming intensity (flux per solid angle) of superthermal electrons and ions. The spacecraft is fitted with two units (heads), each SST unit has two pairs of opposing ion and electron sensors. Each single sensor covers an angle of 36 degrees. The units are oriented such that one pair is always centered in the rotation plane, the other oriented at a maximum angle of 54 degrees off the plane. Each pair of units are oriented opposite each other allowing both ion and electron sensors to sweep out a maximum of 92% of the sky (45x45 degree required Elevation by Azimuth FOV, 108x22 raw) . The ion and electron sensors primarily measure particles between 30-300 keV and 30-100 keV respectively with a maximum capability of 20-6000 keV and 25-1000 keV. Full distribution data is measured over 128 angles and 16 energy bins, reduced distribution uses 6 angles and 16 energy bins, and burst mode data has 64 angles in 16 energy bins. Matched and paired electron broom magnets produce quadrapole fields reducing magnetic contamination. A mechanical attenuator is used to increase the instruments dynamical range avoiding oversaturation near the plasma sheet edge.

42) THEMIS-C: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/C/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-C Cadence:4 seconds
Stop:2014-04-17 01:01:25 Instrument:THEMIS-C Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

43) THEMIS-C: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/C/FFT/PT0.0556S
Start:2007-02-24 03:37:16 Observatory:THEMIS-C Cadence:0.0556 seconds
Stop:2014-04-17 01:01:25 Instrument:THEMIS-C Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 30 June - 3 July 2008: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. Table 3: Instrument-Spacecraft Physical Configuration Instrument Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM: *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

44) THEMIS-C: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/C/SST/PT3S
Start:2007-03-14 01:00:00 Observatory:THEMIS-C Cadence:3 seconds
Stop:2014-04-17 01:01:27 Instrument:THEMIS-C: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). Resource:NumericalData
THEMIS-C: The Solid State Telescope (SST) measures the incoming intensity (flux per solid angle) of superthermal electrons and ions. The spacecraft is fitted with two units (heads), each SST unit has two pairs of opposing ion and electron sensors. Each single sensor covers an angle of 36 degrees. The units are oriented such that one pair is always centered in the rotation plane, the other oriented at a maximum angle of 54 degrees off the plane. Each pair of units are oriented opposite each other allowing both ion and electron sensors to sweep out a maximum of 92% of the sky (45x45 degree required Elevation by Azimuth FOV, 108x22 raw) . The ion and electron sensors primarily measure particles between 30-300 keV and 30-100 keV respectively with a maximum capability of 20-6000 keV and 25-1000 keV. Full distribution data is measured over 128 angles and 16 energy bins, reduced distribution uses 6 angles and 16 energy bins, and burst mode data has 64 angles in 16 energy bins. Matched and paired electron broom magnets produce quadrapole fields reducing magnetic contamination. A mechanical attenuator is used to increase the instruments dynamical range avoiding oversaturation near the plasma sheet edge.

45) THEMIS-D: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/D/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-D Cadence:4 seconds
Stop:2014-04-17 01:01:16 Instrument:THEMIS-D Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

46) THEMIS-D: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/D/FFT/PT0.0556S
Start:2007-02-24 00:00:00 Observatory:THEMIS-D Cadence:0.0556 seconds
Stop:2014-04-17 01:01:17 Instrument:THEMIS-D Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal | Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 23-27 June 2008: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. Table 3: Instrument-Spacecraft Physical Configuration Instrument | Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

47) THEMIS-D: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/D/SST/PT3S
Start:2007-03-14 01:00:00 Observatory:THEMIS-D Cadence:3 seconds
Stop:2014-04-17 01:01:19 Instrument:THEMIS-D: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). Resource:NumericalData
THEMIS-D: The Solid State Telescope (SST) measures the incoming intensity (flux per solid angle) of superthermal electrons and ions. The spacecraft is fitted with two units (heads), each SST unit has two pairs of opposing ion and electron sensors. Each single sensor covers an angle of 36 degrees. The units are oriented such that one pair is always centered in the rotation plane, the other oriented at a maximum angle of 54 degrees off the plane. Each pair of units are oriented opposite each other allowing both ion and electron sensors to sweep out a maximum of 92% of the sky (45x45 degree required Elevation by Azimuth FOV, 108x22 raw) . The ion and electron sensors primarily measure particles between 30-300 keV and 30-100 keV respectively with a maximum capability of 20-6000 keV and 25-1000 keV. Full distribution data is measured over 128 angles and 16 energy bins, reduced distribution uses 6 angles and 16 energy bins, and burst mode data has 64 angles in 16 energy bins. Matched and paired electron broom magnets produce quadrapole fields reducing magnetic contamination. A mechanical attenuator is used to increase the instruments dynamical range avoiding oversaturation near the plasma sheet edge.

48) THEMIS-E: Probe Electric Field Instrument and Search Coil Magnetometer Instrument, Digital Fields Board - digitally computed Filter Bank spectra and E12 peak and average in HF band (FBK). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/E/FBK/PT4S
Start:2007-02-24 00:00:01 Observatory:THEMIS-E Cadence:4 seconds
Stop:2014-04-17 01:01:13 Instrument:THEMIS-E Electric Field Instrument Resource:NumericalData
The Filter Bank is part of the Digital fields board and provides band-pass filtering for EFI and SCM spectra as well as E12HF peak and average value calculations. The Filter Bank provides band-pass filtering for less computationally and power intensive spectra than the FFT would provide. The process is as follows: Signals are fed to the Filter Bank via a low-pass FIR filter with a cut-off frequency half that of the original signal maximum. The output is passed to the band-pass filters, is differenced from the original signal, then absolute value of the data is taken and averaged. The output from the low-pass filter is also sent to a second FIR filter with 2:1 decimation. This output is then fed back through the system. The process runs through 12 cascades for input at 8,192 samples/s and 13 for input at 16,384 samples/sec (EAC input only), reducing the signal and computing power by a factor 2 at each cascade. At each cascade a set of data is produced at a sampling frequency of 2^n from 2 Hz to the initial sampling frequency (frequency characteristics for each step are shown below in Table 1). The average from the Filter Bank is compressed to 8 bits with a pseudo-logarithmic encoder. The data is stored in sets of six frequency bins at 2.689 kHz, 572 Hz, 144.2 Hz, 36.2 Hz, 9.05 Hz, and 2.26 Hz. The average of the coupled E12HF signal and it's peak value are recorded over 62.5 ms windows (i.e. a 16 Hz sampling rate). Accumulation of values from signal 31.25 ms windows is performed externally. The analog signals fed into the FBK are E12DC and SCM1. Sensor and electronics design provided by UCB (J. W. Bonnell, F. S. Mozer), Digital Fields Board provided by LASP (R. Ergun), Search coil data provided by CETP (A. Roux). Table 1: Frequency Properties. Cascade | Frequency content of Input Signal | Low-pass Filter Cutoff Frequency | Freuency Content of Low-pass Output Signal | Filter Bank Frequency Band 0* 0 - 8 kHz 4 kHz 0 - 4 kHz 4 - 8 kHz 1 0 - 4 kHz 2 kHz 0 - 2 kHz 2 - 4 kHz 2 0 - 2 kHz 1 kHz 0 - 1 kHz 1 - 2 kHz 3 0 - 1 kHz 512 Hz 0 - 512 Hz 512 Hz - 1 kHz 4 0 - 512 Hz 256 Hz 0 - 256 Hz 256 - 512 Hz 5 0 - 256 Hz 128 Hz 0 - 128 Hz 128 - 256 Hz 6 0 - 128 Hz 64 Hz 0 - 64 Hz 64 - 128 Hz 7 0 - 64 Hz 32 Hz 0 - 32 Hz 32 - 64 Hz 8 0 - 32 Hz 16 Hz 0 - 16 Hz 16 - 32 Hz 9 0 - 16 Hz 8 Hz 0 - 8 Hz 8 - 16 Hz 10 0 - 8 Hz 4 Hz 0 - 4 Hz 4 - 8 Hz 11 0 - 4 Hz 2 Hz 0 - 2 Hz 2 - 4 Hz 12 0 - 2 Hz 1 Hz 0 - 1 Hz 1 - 2 Hz *Only available for 16,384 Hz sampling.

49) THEMIS-E: On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements, for particle and wave burst survey modes. maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/E/FFT/PT0.0556S
Start:2007-02-24 00:00:00 Observatory:THEMIS-E Cadence:0.0556 seconds
Stop:2014-04-17 01:01:14 Instrument:THEMIS-E Electric Field Instrument Resource:NumericalData
On Board Fast Fourier Transform (FFT) power spectra of Electric (EFI) and Magnetic (SCM) field measurements for particle and wave burst survey modes. Spectra are produced only in Particle Burst and Wave Burst modes; only a preselected four of the signals listed in Table 1 are input at any time. Data fed through the FFT while not in Particle or Wave Burst modes is automatically disgarded. The FFTs (Cooley-Tukey algorithm) are conducted as an integral part of the power spectrum calculation by the Field Programable Gate Arrays (FPGAs). A CORDIC algorithm is used for sine/cosine calculations. The data has raw resolution of 1024 pts for 8,192 sample/sec signals and 2048 pts for 16,384 sample/sec signals (EAC measurements only). Signals at 8,192 samples/sec are handled by 1024-point FFTs, while those at 16,384 samples/sec go through 2048-point FFTs. Past and current signal configurations for specific spacecraft are listed bellow in Table 2. The spectra are arranged into log spaced frequency bins in steps of 16, 32, or 64. Cadence is adjusted to keep packet size constant (i.e. increasing the fequency resolution by a factor of 2 decreases the sampling rate by 1/2). The frequency bins cover a range of 0 Hz to 4 kHz. Table 1: FFT Input Signals. Signal | Description SCMX, SCMY, SCMZ: Three axis magnetic fiend from SCM V1 through V6: Probe-spacecraft voltage for all six EFI sensors E12DC, E34DC, E56DC: DC-coupled electric field measured from opposing EFI sensors E12AC, E34AV, E56AC: AC-coupled electric field measured from opposing EFI sensors E12HF: High frequency electric field from EFI Table 2: Spacecraft specific configurations. All probes were initially set to use EDC34, EDC56, SCM2, and SCM3 signals for both particle and wave burst modes. Output was set to 16 frequency bins at 4 Hz. Configuration Changes: 23-27 June 2008: Particle burst spectra on all probes reconfigured to 64 bins at 1 Hz. Table 3: Instrument-Spacecraft Physical Configuration Instrument | Alignment in Spacecraft Geometric coordinates (SPG). See THEMIS website for coordinate system details and mechanical drawings. EFI boom 1: Along positive X-axis EFI boom 2: Along negative X-axis EFI boom 3: Along positive Y-axis EFI boom 4: Along negative Y-axis EFI boom 5: Along positive Z-axis EFI boom 6: Along negative Z-axis SCM: *The SCM uses an instrument specific set of axes; an orthogonal system centered instrument with the X-axis 12.1 degrees from the SPG X-axis.

50) THEMIS-E: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). maxmize
Resource ID:spase://VMO/NumericalData/THEMIS/E/SST/PT3S
Start:2007-03-14 01:00:00 Observatory:THEMIS-E Cadence:3 seconds
Stop:2014-04-17 01:01:16 Instrument:THEMIS-E: Solid State Telescope (SST): Energy flux spectrogram, electron/ion ground-calculated fluxes (30 keV - 300 keV). Resource:NumericalData
THEMIS-E: The Solid State Telescope (SST) measures the incoming intensity (flux per solid angle) of superthermal electrons and ions. The spacecraft is fitted with two units (heads), each SST unit has two pairs of opposing ion and electron sensors. Each single sensor covers an angle of 36 degrees. The units are oriented such that one pair is always centered in the rotation plane, the other oriented at a maximum angle of 54 degrees off the plane. Each pair of units are oriented opposite each other allowing both ion and electron sensors to sweep out a maximum of 92% of the sky (45x45 degree required Elevation by Azimuth FOV, 108x22 raw) . The ion and electron sensors primarily measure particles between 30-300 keV and 30-100 keV respectively with a maximum capability of 20-6000 keV and 25-1000 keV. Full distribution data is measured over 128 angles and 16 energy bins, reduced distribution uses 6 angles and 16 energy bins, and burst mode data has 64 angles in 16 energy bins. Matched and paired electron broom magnets produce quadrapole fields reducing magnetic contamination. A mechanical attenuator is used to increase the instruments dynamical range avoiding oversaturation near the plasma sheet edge.

Showing 1 - 50Next