Search results 249 matches in 0.004 seconds
Showing 1 - 50Next

1) AMPTE/CCE Browse Plots JHU/APL maxmize
Resource ID:spase://VSPO/DisplayData/AMPTE_CCE/CHEM/P1D
Start:1984-08-21 00:00:00 Observatory:AMPTE/CCE Cadence:1 day
Stop:1989-01-10 00:00:00 Instrument:Charge-Energy-Mass experiment (CHEM) Resource:DisplayData
These are daily, instrument-specific plots of data from all the AMPTE/CCE instruments. For the energetic particle data of the CHEM, HPCE and MEPA instruments, the data are spectrograms with color coded count rates or fluxes vs. time and vs. any one of several available independent variables. For the magnetic field and plasma wave data from MFE and PWE, the plots are simpler intensity-vs-time plots.

2) AMPTE/IRM Plasma Data from the University of Iowa maxmize
Resource ID:spase://VSPO/NumericalData/AMPTE_IRM/PWS/PT1M
Start:1984-05-13 00:00:00 Observatory:AMPTE/IRM Cadence:1 minute
Stop:1985-07-18 00:00:00 Instrument:AMPTE/IRM Plasma Wave Spectrometer Resource:NumericalData
This set of AMPTE IRM data came from the University of Iowa single-channel digitized waveform file. Each file (table) contains plasa waves measured in the frequency range from quasi-dc to 5 MHz and occurring in an integral one minute interval. Each record (row) contains a 10 millisecond waveform series.

3) Akebono PWS NPW Data maxmize
Resource ID:spase://VWO/NumericalData/Akebono/PWS/E.NPW.PT2S
Start:1989-02-24 13:32:00 Observatory:Akebono Cadence:2 seconds
Stop:2016-09-14 08:00:15 Instrument:Plasma Wave Observation and Sounder Experiments (PWS) Resource:NumericalData
The Plasma Wave Observation and Sounder Experiment (PWS) observes both natural (NPW) and stimulated (SPW) plasma waves. The frequency range of the NPW system is 20 kHz to 5.12 MHz. These CDF data consist of Electric Field intensities measured by the PWS Recevier 1 (RX1) and Receiver 2 (RX2) units.

4) Alouette-2 Topside Sounder Ionogram Data maxmize
Resource ID:spase://VWO/NumericalData/Alouette2/SFS/PT31S
Start:1965-11-29 13:42:37 Observatory:Alouette 2 Cadence:31 seconds
Stop:1968-01-01 04:11:45 Instrument:Alouette 2 Sweep-Frequency Sounder Resource:NumericalData
These ionograms were digitized from the original Alouette 2 7-track analog telemetry tapes using the facilities of the former Data Evaluation Laboratory at the NASA/GSFC. This data restoration project is headed by Dr. R.F. Benson (NASA/GSFC). Ionograms were digitized at the rate of 40,000 16-bit samples/sec. This sample rate is higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 kHz provides a measurement every 25 microseconds corresponding to an apparent range (c*t/2) interval of 3.75 km. The ionograms consist of swept-frequency operation (there is no fixed-frequency operation as in ISIS-1 and ISIS-2). The time resolution between ionograms is typically 31 seconds.

5) Aureol 3 VLF Data maxmize
Resource ID:spase://VSPO/NumericalData/Aureol3/ONCH-TBF/VLF/PT0.3S
Start:1981-09-30 00:00:00 Observatory:Aureol 3 Cadence:0.3 seconds
Stop:1984-07-21 23:59:59 Instrument:Electric and Magnetic Field Probes (ONCH-TBF) Resource:NumericalData
This data set contains power of electromagnetic wave components from narrow band (10%) filters at 140, 450, 800, 4500, and 15000 Hz. For any given time segment the power for any one of five predefined pairs of the five measurable field components (EZ, EH, BZ, BX, BX45) were measured and are included. The components of electromagnetic field are named by their direction in the satellite frame. Spacecraft position in geographic and magnetic coordinates are also included, along with time and an indication of which pair of components were measured. Each data file corresponds to one memory readout, and typically consists of a few continuous-data segments. The first several records in each file constitute a header giving the time spans of the segments, the time resolution, and other common information. The data records are in ASCII.

6) CALLISTO Solar Spectrogram FITS files maxmize
Resource ID:spase://VWO/NumericalData/CALLISTO/FAS.PT0.25S
Start:2002-09-07 12:08:00 Observatory: Cadence:
Stop:2016-09-14 08:00:15 Instrument: Resource:NumericalData
This dataset contains solar dynamic spectrogram FITS files of the CALLISTO spectrometer data from the e-Callisto network of stations. The FITS file is composed of four parts: the ASCII-format header, the binary spectrum and two BIN tables. One table is for the time axis and the other for the frequency axis. FITSvfiles contain the keyword BUNIT in the primary header. If the BUNIT = 'SFU', then data are calibrated. If the BUNIT = 'digits', then data are raw data without any calibration. The naming convention for each file is of the form: STATION_YYYYMMDD_HHMMSS_CODE.fit.gz where STATION is a variable length station name and following the Date (YYYYMMDD) and UT time (HHMMSS) CODE is a two digit number that is an individual description of the front-end of the system. From the website http://e-callisto.org - The CALLISTO spectrometer is a programmable heterodyne receiver built in the framework of IHY2007 and ISWI by former Radio and Plasma Physics Group (PI Christian Monstein) at ETH Zurich, Switzerland. The main applications are observation of solar radio bursts and rfi-monitoring for astronomical science, education and outreach. The instrument natively operates between 45 and 870 MHz using a modern, commercially available broadband cable-TV tuner CD1316 having a frequency resolution of 62.5 KHz. The data obtained from CALLISTO are FIT-files with up to 400 frequencies per sweep. The data are transferred via a RS-232 cable to a computer and saved locally. Time resolution is 0.25 sec at 200 channels per spectrum (800 pixels per second). The integration time is 1 msec and the radiometric bandwidth is about 300 KHz. The overall dynamic range is larger than 50 dB. For convenient data handling several IDL- and Python-routines were written. Many CALLISTO instruments have already been deployed, including: 5 spectrometers in India (2 in Ooty, 1 in Gauribidanur, 1 in Pune, 1 in Ahmedabad), one in Badary near Irkutsk, Russian Federation, two in South Korea, three in Australia (Perth, Melbourne and Heathcote), two in Hawaii, two in Mexico, one in Costa Rica, two in Brazil, three in Mauritius, four in Ireland, one in Czech Republic, two in Mongolia, four in Germany, two in Alaska, two in Kazakhstan, one in Cairo, one in Nairobi, one in Sri Lanka, three in Trieste, one in Hurbanovo/Slovakia, two in Belgium, two in Finland, 8 in Switzerland, one in Sardinia, two in Spain, 5 in Malaysia, two in Indonesia, one in Scotland/UK one in Roztoky/Slovakia, one in Peru, one in Rwanda, one in Pakistan, one in Denmark, one in Japan and one in South Africa. Through the IHY/UNBSSI and ISWI instrument deployment program, CALLISTO is able to continuously observe the solar radio spectrum for 24h per day through all the year. All Callisto spectrometers together form the e-Callisto network. Callisto in addition is dedicated to do radio-monitoring within its frequency range with 13,200 channels per spectrum. The frequency range can be expanded to any range by switching-in a heterodyne up- or a down-converter. Instrument deployment including education and training of observers was financially supported by SNF, SSAA, NASA, Institute for Astronomy and North-South Center of ETH Zurich and a few private sponsors.

7) CRRES plasma wave data maxmize
Resource ID:spase://VMO/NumericalData/CRRES/PWE/PT8S
Start:1990-08-19 00:00:00 Observatory:CRRES Cadence:8 seconds
Stop:1991-09-12 00:00:00 Instrument:Plasma Wave Experiment Resource:NumericalData
This data set contains electron cyclotron frequency, plasma frequency, upper hybrid frequency, and electron density data from the Plasma Wave Experiment on board CREES at about 8 s resolution.

8) CRRES Plasma Wave Experiment Survey Dynamic Spectrogram Plots maxmize
Resource ID:spase://VWO/DisplayData/CRRES/PWE/SFR.SA/Survey.DS.PT10H
Start:1990-08-01 17:35:00 Observatory: Cadence:8 seconds
Stop:1991-10-12 00:45:00 Instrument: Resource:DisplayData
This dataset contains one-orbit duration dynamic spectrogram GIF plots of the CRRES/Plasma Wave Experiment Sweep Frequency Receiver and Multichannel Spectrum Analyzer (electric antenna). CRRES was launched on July 25, 1990, into a geosynchronous transfer orbit with perigee altitude of 350 km and an apogee 6.3Re (Earth radii) geocentric. The inclination was 18.2 deg, the orbital period was 9 h and 52 min, and the initial magnetic local time at apogee was 0800 MLT. The plasma wave experiment measures the electromagnetic and/or electrostatic fields detected by three sensors: 1) a 100 m tip-to-tip extendable fine wire long electric dipole antenna (designated WADA for wire antenna deployment assembly), 2) a search coil magnetometer mounted at the end of a 6-m boom, and 3) a 94-m sphere-to-sphere double probe electric antenna (designated SWDA for spherical-double-probe wire deployment assembly) which is part of the EF/LP experiment. The first two sensors are the primary sensors for the plasma wave experiment whereas the third sensor is the primary sensor for EF/LP experiment. Following the antenna extensions, the spacecraft was spun down to approximately 2 rpm. The normal mode of operation for the plasma wave experiment after the antenna extensions has been to have the sweep frequency receiver locked onto the WADA antenna and the multichannel analyzer cycling through all three antennas. The basic CRRES plasma wave experiment instrumentation includes two receivers: 1) a multichannel spectrum analyzer to provide high-time-resolution spectra from 5.6 Hz to 10kHz, and 2) a sweep frequency receiver for high-frequency- resolution spectrum measurements from 100 Hz to 400 kHz. Each plot shows a plasma wave spectrogram for a one orbit (roughly 10 hour) period. The spectrograms cover the frequency range from 5.6 Hz to 400 kHz presented on a logarithmic scale. The data from 5.6-100 Hz are the measurements from the multichannel spectrum analyzer during the portions of its cycling when it is connected to the WADA antenna. Additional marks along the frequency axis indicate the boundaries between bands on the sweep frequency receiver. Band 1 extends from 100 to 800 Hz, Band 2 from 800 to 6.4 kHz, Band 3 from 6.4 to 50 kHz and Band 4 from 50 to 400 kHz. The intensity of the waves are color-coded and are in units of db(V/m/root(Hz)). The red line superimposed on each plot shows the electron cyclotron frequency calculated from the fluxgate magnetometer experiment. The time resolution above 6.4 kHz is one spectrum every 8s. The striations apparent in some emissions are a result of the beating between the spin rate and the sampling rate. Across the top of the figure is "CRRES SFR/SA" for the CRRES Plasma Wave Experiment Sweep Frequency Receiver and Multichannel Spectrum Analyzer, the units of the color scale is provided as well as the color bar with maximum and minimum values. Beneath the time axis is CRRES orbital information: Radial distance in Earth radii, Magnetic Latitude, Magnetic Local Time and L-shell. Along the left edge of the figure is the orbit number followed by the date. Along the right edge of the figure is "The University of Iowa/AFGL", the name of the software package used to create the plots and the date and time in which the plot was created.

9) Callisto Quicklook Solar Spectrogram Plots maxmize
Resource ID:spase://VWO/DisplayData/Callisto/FAS.PT15M
Start:2002-09-07 12:08:00 Observatory: Cadence:
Stop:2016-09-14 08:00:14 Instrument: Resource:DisplayData
This dataset contains solar dynamic spectrogram PNG plots of the Callisto spectrometer data from the e-Callisto network of stations. Each plot spans 15 minutes. The naming convention for each file is of the form: STATION_YYYYMMDD_HHMMSS_CODE.fit.gz.png where STATION is a variable length station name and following the Date (YYYYMMDD) and UT time (HHMMSS) CODE is a two digit number that is an individual description of the front-end of the system. From the website http://e-callisto.org - The CALLISTO spectrometer is a programmable heterodyne receiver built in the framework of IHY2007 and ISWI by former Radio and Plasma Physics Group (PI Christian Monstein) at ETH Zurich, Switzerland. The main applications are observation of solar radio bursts and rfi-monitoring for astronomical science, education and outreach. The instrument natively operates between 45 and 870 MHz using a modern, commercially available broadband cable-TV tuner CD1316 having a frequency resolution of 62.5 KHz. The data obtained from CALLISTO are FIT-files with up to 400 frequencies per sweep. The data are transferred via a RS-232 cable to a computer and saved locally. Time resolution is 0.25 sec at 200 channels per spectrum (800 pixels per second). The integration time is 1 msec and the radiometric bandwidth is about 300 KHz. The overall dynamic range is larger than 50 dB. For convenient data handling several IDL- and Python-routines were written. Many CALLISTO instruments have already been deployed, including: 5 spectrometers in India (2 in Ooty, 1 in Gauribidanur, 1 in Pune, 1 in Ahmedabad), one in Badary near Irkutsk, Russian Federation, two in South Korea, three in Australia (Perth, Melbourne and Heathcote), two in Hawaii, two in Mexico, one in Costa Rica, two in Brazil, three in Mauritius, four in Ireland, one in Czech Republic, two in Mongolia, four in Germany, two in Alaska, two in Kazakhstan, one in Cairo, one in Nairobi, one in Sri Lanka, three in Trieste, one in Hurbanovo/Slovakia, two in Belgium, two in Finland, 8 in Switzerland, one in Sardinia, two in Spain, 5 in Malaysia, two in Indonesia, one in Scotland/UK one in Roztoky/Slovakia, one in Peru, one in Rwanda, one in Pakistan, one in Denmark, one in Japan and one in South Africa. Through the IHY/UNBSSI and ISWI instrument deployment program, CALLISTO is able to continuously observe the solar radio spectrum for 24h per day through all the year. All Callisto spectrometers together form the e-Callisto network. Callisto in addition is dedicated to do radio-monitoring within its frequency range with 13,200 channels per spectrum. The frequency range can be expanded to any range by switching-in a heterodyne up- or a down-converter. Instrument deployment including education and training of observers was financially supported by SNF, SSAA, NASA, Institute for Astronomy and North-South Center of ETH Zurich and a few private sponsors.

10) Cassini RPWS Key Parameter 60S maxmize
Resource ID:spase://VWO/NumericalData/Cassini/RPWS/KP_PT60S
Start:1997-10-25 00:00:00 Observatory:Cassini Cadence:60 seconds
Stop:2015-11-19 08:00:15 Instrument:Cassini RPWS Resource:NumericalData
The Cassini Radio and Plasma Wave Science (RPWS) calibrated summary key parameter data set includes reduced temporal and spectral resolution spectral information calibrated in units of spectral density for the entire Cassini mission. This data set includes calibrated values binned and averaged within 1 minute by 0.1 decade spectral channels for all times during the mission including the two Venus flybys, the Earth flyby, the Jupiter flyby, interplanetary cruise, and the entire Saturn tour. Data for this data set are acquired by the RPWS Low Frequency Receiver (LFR), Medium Frequency Receiver (MFR), and High Frequency Receiver (HFR). Data are presented in a set of fixed-record-length tables. This data set is intended to provide numerical summary data which can be used in conjunction with other Cassini fields and particles key parameter data sets to establish trends, select events, or simply as a browse data set for the Cassini RPWS archive. This data set should be among the first used by a user of any of the RPWS archive as it will lead one to information required to search for more detailed or highly specialized products.

11) Cassini RPWS Low Rate Full Resolution maxmize
Resource ID:spase://VWO/NumericalData/Cassini/RPWS/LRFULL_PT32S
Start:1997-10-25 00:00:00 Observatory:Cassini Cadence:32 seconds
Stop:2015-11-19 08:00:15 Instrument:Cassini RPWS Resource:NumericalData
The Cassini Radio and Plasma Wave Science (RPWS) Low Rate Full Resolution Calibrated (RPWS_LOW_RATE_FULL) is a data set including all spectral density measurements acquired by the RPWS in units of electric or magnetic field spectral density. This data set includes calibrated values for each frequency channel for each sensor for all times during the mission including the two Venus flybys, the Earth flyby, the Jupiter flyby, interplanetary cruise, and the entire Saturn tour. Data for this data set are acquired from the RPWS Low Frequency Receiver (LFR), Medium Frequency Receiver (MFR), Medium Frequency Digital Receiver (MFDR) (which can be used to replace MFR band 2 data) and High Frequency Receiver (HFR). Data are presented in a set of tables organized so as to have fixed-length records for ease in data handling. This data set is intended to be the most comprehensive and complete data set included in the Cassini RPWS archive. A browse data set is included with these data which provides for a graphical search of the data using a series of thumbnail and full-sized spectrograms which lead the user to the particular data file(s) of interest. This data set should be among the first used by a user of any of the RPWS archive as it will lead one to information required to search for more detailed or highly specialized products.

12) Cluster II Rumba Prime Parameter Electric Field and Waves (EFW) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/EFW/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2016-09-14 07:58:16 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440-29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1-700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1-100/cm. There is also a frequency counter covering the range 10-200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Spherical Probe Electric Field and Waves experiment for the Cluster Mission, by G. Gustafsson et al., from which this information was obtained.

13) Cluster II Rumba Prime Parameter Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/STAFF/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2016-09-14 07:58:16 Instrument:Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Resource:NumericalData
The Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) experiment provides magnetic field power spectral density values parallel and perpendicular to the magnetic field and the electric field power spectral density values for several frequency ranges. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission, by N. Cornilleau-Wehrlin et al., from which this information was obtained.

14) Cluster Rumba WBD High Time Resolution Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster-Rumba/WBD/DS.GIF.PT30S
Start:2001-02-03 05:26:00 Observatory:Cluster FM5 (Rumba) Cadence:
Stop:2016-09-14 08:00:14 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains 30 s duration survey spectrogram plots from the WBD instrument on the Cluster spacecraft. The spectrograms are created by 1024 point FFTs and plotted with frequency on the vertical axis, increasing time on the horizontal, and color indicating power spectral density, in relative dB. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). Above the spectrogram plot are a line plot panel, followed by four status lines. The line plot panel at the top provides the gain state (0 to 75 dB, in 5 dB steps) of the instrument. The four status lines provide the following information according to the color code in the upper right corner: Data mode - whether from DSN mode (real time telemetry), or from BM2 mode (recorded onboard in Burst Mode 2) as digitally filtered or duty cycled. Antenna - the electric field (Ey or Ez) or the magnetic field (Bx or By) antenna used. Resolution - the data digitization level, which can be 1 bit, 4 bit or 8 bit. Translation - the translation from base frequency of 0 kHz. In the lower right-hand corner are the ephemeris values applicable to the start time of the plot. At the middle right-hand side are given the date and start time of the plot as well as the spacecraft number. The University of Iowa repository maintains two types of high time resolution spectrogram plots in GIF format: a ten minute (PT10M Display Cadence) and a 30 second time span (PT30S Display Cadence). Both types of files provide information on WBD gain and operational mode, the spectral data from one spacecraft, the start date and time and ephemeris data. Overview spectrograms are also available. The availability of these files depends on times of DSN and Pansak Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www-pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

15) Cluster 1 Wideband Data Plasma Wave Receiver/High Time Resolution Waveform Data maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Rumba/WBD/PT0.0000046S
Start:2001-02-03 05:26:00 Observatory:Cluster FM5 (Rumba) Cadence:0.0000046 seconds
Stop:2016-09-14 08:00:14 Instrument:Wide Band Data (WBD) Resource:NumericalData
The following description applies to the Wideband Data (WBD) Plasma Wave Receivers on all four Cluster satellites, each satellite being uniquely identified by its number (1 through 4) or its given name (Rumba, Salsa, Samba, Tango, respectively). High time resolution calibrated waveform data sampled in one of 3 frequency bands in the range 0-577 kHz along one axis using either an electric field antenna or a magnetic search coil sensor. The dataset also includes instrument mode, data quality and the angles required to orient the measurement with respect to the magnetic field and to the GSE coordinate system. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW (Electric Fields and Waves) instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF (Spatio-Temporal Analysis of Field Fluctuations) instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data (generally the 77 kHz bandwidth mode) are sampled at 4.6 microseconds in the time domain (~4.7 milliseconds in the frequency domain using a standard 1024 point FFT). The lowest time resolution data (generally the 9.5 kHz bandwidth mode) are sampled at 36.5 microseconds in the time domain (~37.3 milliseconds in the frequency domain using a standard 1024 point FFT). The availability of these files depends on times of DSN and Panska Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www- pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (CAA) (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues and Caveats can be found at http://www- pw.physics.uiowa.edu/cluster/ by clicking on the links next to the Caution symbol in the listing on the left side of the web site. These documents are also available from the Documentation section of the CAA website. For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183, and the Cluster WBD User Guide archived at the CAA website in the Documentation section. ... CALIBRATION: ... The procedure used in computing the calibrated Electric Field and Magnetic Field values found in this file can be obtained from the Cluster WBD Calibration Report archived at the CAA website in the Documentation section. Because the calibration was applied in the time domain using simple equations the raw counts actually measured by the WBD instrument can be obtained by using these equations and solving for 'Raw Counts', keeping in mind that this number is an Integer ranging from 0 to 255. Since DC offset is a real number, the resultant when solving for raw counts will need to be converted to the nearest whole number. A sample IDL routine for reverse calibrating to obtain 'Raw Counts' is provided in the WBD Calibration Report archived at the CAA. ... CONVERSION TO FREQUENCY DOMAIN: ... In order to convert the WBD data to the frequency domain via an FFT, the following steps need to be carried out: 1) If Electric Field, first divide calibrated data values by 1000 to get V/m; 2) Apply window of preference, if any (such as Hann, etc.); 3) Divide data values by sqrt(2) to get back to the rms domain; 4) perform FFT (see Bandwidth variable notes for non-continuous modes and/or the WBD User Guide archived at the CAA); 5) divide by the noise bandwidth, which is equal to the sampling frequency divided by the FFT size (see table below for appropriate sampling frequency); 6) multiply by the appropriate constant for the window used, if any. These steps are more fully explained in the WBD Calibration Report archived at the CAA.... +--------------------------+ | Bandwidth | Sample Rate | |-----------|--------------| | 9.5 kHz | 27.443 kHz | | 19 kHz | 54.886 kHz | | 77 kHz | 219.544 kHz | +--------------------------+ COORDINATE SYSTEM USED: ... One axis measurements made in the Antenna Coordinate System, i.e., if electric field measurement, it will either be Ey or Ez, both of which are in the spin plane of the spacecraft, and if magnetic field measurement, it will either be Bx, along the spin axis, or By, in spin plane. The user of WBD data should refer to the WBD User Guide, archived at the CAA, Section 5.4.1 and Figure 5.3 for a description of the three orientation angles provided in these files. Since WBD measurements are made along one axis only, these three angles provide the only means for orienting the WBD measurements with respect to a geocentric coordinate system and to the magnetic field direction ...

16) Cluster Rumba Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data at the ESA Cluster Science Archive maxmize
Resource ID:spase://VSPO/NumericalData/Cluster-Rumba/WHISPER/CSA/PT0.2S
Start:2001-02-02 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:0.2 seconds
Stop:2016-09-14 07:59:49 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
Two main types of data resulted from WHISPER (Waves of HF and Sounder for Probing Electron Density by Relaxation) onboard Cluster: the total electron density at standard time resolutions of either 2.15 or 52 s, and electric field spectra in the frequency range 2?82 KHz with time resolutions of 1.7 or 3.4 seconds. Data products available from the Cluster Active Archive include: electron number density, electric spectral power density (natural waves), electric spectral power density from active and passive emission during sounding, and electric waveform power density (energy) in 0.2 second resolution. Ancillary data include density comparisons with PEACE and CIS measurements onboard Cluster; sounding times; housekeeping data; electron density in spin-resolution (4 seconds) and 1 minute averages; electron gyrofrequency in plasmasphere; instrument parameters during natural mode and active mode; active to passive spectral power density coded ratio; and caveats. Please note that WHISPER densities are used for calibrations of CLUSTER instruments, in particular particle instruments, which have difficulties to measure the colder part of the population, and EFW instrument, because spacecraft potential variations, currently used as a proxy of density variations, depend not only on the density but also on the energy of electrons. For more details, see "The Cluster Active Archive: Studying the Earth's Space Plasma Environment", edited by Dr. Harri Laakso, Matthew G. T. T. Taylor, C. Philippe Escoubet, from which this information was obtained.

17) Cluster 1 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Rumba/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM5 (Rumba) Cadence:2.14 seconds
Stop:2016-09-14 08:00:14 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

18) Cluster 1 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Rumba/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM5 (Rumba) Cadence:52 seconds
Stop:2016-09-14 08:00:14 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

19) Cluster II Rumba Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2016-09-14 07:58:16 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

20) Cluster II Salsa Prime Parameter Electric Field and Waves (EFW) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/EFW/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2016-09-14 07:58:21 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440-29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1-700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1-100/cm. There is also a frequency counter covering the range 10-200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Spherical Probe Electric Field and Waves experiment for the Cluster Mission, by G. Gustafsson et al., from which this information was obtained.

21) Cluster II Salsa Prime Parameter Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/STAFF/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2016-09-14 07:58:21 Instrument:Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Resource:NumericalData
The Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) experiment provides magnetic field power spectral density values parallel and perpendicular to the magnetic field and the electric field power spectral density values for several frequency ranges. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission, by N. Cornilleau-Wehrlin et al., from which this information was obtained.

22) Cluster Salsa WBD High Time Resolution Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster-Salsa/WBD/DS.GIF.PT30S
Start:2001-02-03 05:26:00 Observatory:Cluster FM6 (Salsa) Cadence:
Stop:2016-09-14 08:00:14 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains 30 s duration survey spectrogram plots from the WBD instrument on the Cluster spacecraft. The spectrograms are created by 1024 point FFTs and plotted with frequency on the vertical axis, increasing time on the horizontal, and color indicating power spectral density, in relative dB. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). Above the spectrogram plot are a line plot panel, followed by four status lines. The line plot panel at the top provides the gain state (0 to 75 dB, in 5 dB steps) of the instrument. The four status lines provide the following information according to the color code in the upper right corner: Data mode - whether from DSN mode (real time telemetry), or from BM2 mode (recorded onboard in Burst Mode 2) as digitally filtered or duty cycled. Antenna - the electric field (Ey or Ez) or the magnetic field (Bx or By) antenna used. Resolution - the data digitization level, which can be 1 bit, 4 bit or 8 bit. Translation - the translation from base frequency of 0 kHz. In the lower right-hand corner are the ephemeris values applicable to the start time of the plot. At the middle right-hand side are given the date and start time of the plot as well as the spacecraft number. The University of Iowa repository maintains two types of high time resolution spectrogram plots in GIF format: a ten minute (PT10M Display Cadence) and a 30 second time span (PT30S Display Cadence). Both types of files provide information on WBD gain and operational mode, the spectral data from one spacecraft, the start date and time and ephemeris data. Overview spectrograms are also available. The availability of these files depends on times of DSN and Pansak Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www-pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

23) Cluster 2 Wideband Data Plasma Wave Receiver/High Time Resolution Waveform Data maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Salsa/WBD/PT0.0000046S
Start:2001-02-03 05:26:00 Observatory:Cluster FM6 (Salsa) Cadence:0.0000046 seconds
Stop:2016-09-14 08:00:15 Instrument:Wide Band Data (WBD) Resource:NumericalData
The following description applies to the Wideband Data (WBD) Plasma Wave Receivers on all four Cluster satellites, each satellite being uniquely identified by its number (1 through 4) or its given name (Rumba, Salsa, Samba, Tango, respectively). High time resolution calibrated waveform data sampled in one of 3 frequency bands in the range 0-577 kHz along one axis using either an electric field antenna or a magnetic search coil sensor. The dataset also includes instrument mode, data quality and the angles required to orient the measurement with respect to the magnetic field and to the GSE coordinate system. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW (Electric Fields and Waves) instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF (Spatio-Temporal Analysis of Field Fluctuations) instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data (generally the 77 kHz bandwidth mode) are sampled at 4.6 microseconds in the time domain (~4.7 milliseconds in the frequency domain using a standard 1024 point FFT). The lowest time resolution data (generally the 9.5 kHz bandwidth mode) are sampled at 36.5 microseconds in the time domain (~37.3 milliseconds in the frequency domain using a standard 1024 point FFT). The availability of these files depends on times of DSN and Panska Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www- pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (CAA) (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues and Caveats can be found at http://www- pw.physics.uiowa.edu/cluster/ by clicking on the links next to the Caution symbol in the listing on the left side of the web site. These documents are also available from the Documentation section of the CAA website. For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183, and the Cluster WBD User Guide archived at the CAA website in the Documentation section. ... CALIBRATION: ... The procedure used in computing the calibrated Electric Field and Magnetic Field values found in this file can be obtained from the Cluster WBD Calibration Report archived at the CAA website in the Documentation section. Because the calibration was applied in the time domain using simple equations the raw counts actually measured by the WBD instrument can be obtained by using these equations and solving for 'Raw Counts', keeping in mind that this number is an Integer ranging from 0 to 255. Since DC offset is a real number, the resultant when solving for raw counts will need to be converted to the nearest whole number. A sample IDL routine for reverse calibrating to obtain 'Raw Counts' is provided in the WBD Calibration Report archived at the CAA. ... CONVERSION TO FREQUENCY DOMAIN: ... In order to convert the WBD data to the frequency domain via an FFT, the following steps need to be carried out: 1) If Electric Field, first divide calibrated data values by 1000 to get V/m; 2) Apply window of preference, if any (such as Hann, etc.); 3) Divide data values by sqrt(2) to get back to the rms domain; 4) perform FFT (see Bandwidth variable notes for non-continuous modes and/or the WBD User Guide archived at the CAA); 5) divide by the noise bandwidth, which is equal to the sampling frequency divided by the FFT size (see table below for appropriate sampling frequency); 6) multiply by the appropriate constant for the window used, if any. These steps are more fully explained in the WBD Calibration Report archived at the CAA.... +--------------------------+ | Bandwidth | Sample Rate | |-----------|--------------| | 9.5 kHz | 27.443 kHz | | 19 kHz | 54.886 kHz | | 77 kHz | 219.544 kHz | +--------------------------+ COORDINATE SYSTEM USED: ... One axis measurements made in the Antenna Coordinate System, i.e., if electric field measurement, it will either be Ey or Ez, both of which are in the spin plane of the spacecraft, and if magnetic field measurement, it will either be Bx, along the spin axis, or By, in spin plane. The user of WBD data should refer to the WBD User Guide, archived at the CAA, Section 5.4.1 and Figure 5.3 for a description of the three orientation angles provided in these files. Since WBD measurements are made along one axis only, these three angles provide the only means for orienting the WBD measurements with respect to a geocentric coordinate system and to the magnetic field direction ...

24) Cluster Salsa Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data at the ESA Cluster Science Archive maxmize
Resource ID:spase://VSPO/NumericalData/Cluster-Salsa/WHISPER/CSA/PT1S
Start:2001-02-02 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:1 second
Stop:2016-09-14 08:00:04 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
Two main types of data resulted from WHISPER (Waves of HF and Sounder for Probing Electron Density by Relaxation) onboard Cluster: the total electron density at standard time resolutions of either 2.15 or 52 s, and electric field spectra in the frequency range 2?82 KHz with time resolutions of 1.7 or 3.4 seconds. Data products available from the Cluster Active Archive include: electron number density, electric spectral power density (natural waves), electric spectral power density from active and passive emission during sounding, and electric waveform power density (energy). Ancillary data include density comparisons with PEACE and CIS measurements onboard Cluster; sounding times; housekeeping data; electron density in spin-resolution (4 seconds) and 1 minute averages; electron gyrofrequency in plasmasphere; instrument parameters during natural mode and active mode; active to passive spectral power density coded ratio; and caveats. Please note that WHISPER densities are used for calibrations of CLUSTER instruments, in particular particle instruments, which have difficulties to measure the colder part of the population, and EFW instrument, because spacecraft potential variations, currently used as a proxy of density variations, depend not only on the density but also on the energy of electrons. For more details, see "The Cluster Active Archive: Studying the Earth's Space Plasma Environment", edited by Dr. Harri Laakso, Matthew G. T. T. Taylor, C. Philippe Escoubet, from which this information was obtained.

25) Cluster 2 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Salsa/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM6 (Salsa) Cadence:2.14 seconds
Stop:2016-09-14 08:00:15 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

26) Cluster 2 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Salsa/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM6 (Salsa) Cadence:52 seconds
Stop:2016-09-14 08:00:15 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

27) Cluster II Salsa Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2016-09-14 07:58:21 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

28) Cluster II Samba Prime Parameter Electric Field and Waves (EFW) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/EFW/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2016-09-14 07:58:22 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440-29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1-700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1-100/cm. There is also a frequency counter covering the range 10-200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Spherical Probe Electric Field and Waves experiment for the Cluster Mission, by G. Gustafsson et al., from which this information was obtained.

29) Cluster II Samba Prime Parameter Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/STAFF/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2016-09-14 07:58:22 Instrument:Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Resource:NumericalData
The Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) experiment provides magnetic field power spectral density values parallel and perpendicular to the magnetic field and the electric field power spectral density values for several frequency ranges. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission, by N. Cornilleau-Wehrlin et al., from which this information was obtained.

30) Cluster Samba WBD High Time Resolution Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster-Samba/WBD/DS.GIF.PT30S
Start:2001-02-03 05:26:00 Observatory:Cluster FM7 (Samba) Cadence:
Stop:2016-09-14 08:00:14 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains 30 s duration survey spectrogram plots from the WBD instrument on the Cluster spacecraft. The spectrograms are created by 1024 point FFTs and plotted with frequency on the vertical axis, increasing time on the horizontal, and color indicating power spectral density, in relative dB. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). Above the spectrogram plot are a line plot panel, followed by four status lines. The line plot panel at the top provides the gain state (0 to 75 dB, in 5 dB steps) of the instrument. The four status lines provide the following information according to the color code in the upper right corner: Data mode - whether from DSN mode (real time telemetry), or from BM2 mode (recorded onboard in Burst Mode 2) as digitally filtered or duty cycled. Antenna - the electric field (Ey or Ez) or the magnetic field (Bx or By) antenna used. Resolution - the data digitization level, which can be 1 bit, 4 bit or 8 bit. Translation - the translation from base frequency of 0 kHz. In the lower right-hand corner are the ephemeris values applicable to the start time of the plot. At the middle right-hand side are given the date and start time of the plot as well as the spacecraft number. The University of Iowa repository maintains two types of high time resolution spectrogram plots in GIF format: a ten minute (PT10M Display Cadence) and a 30 second time span (PT30S Display Cadence). Both types of files provide information on WBD gain and operational mode, the spectral data from one spacecraft, the start date and time and ephemeris data. Overview spectrograms are also available. The availability of these files depends on times of DSN and Pansak Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www-pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

31) Cluster 3 Wideband Data Plasma Wave Receiver/High Time Resolution Waveform Data maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Samba/WBD/PT0.0000046S
Start:2001-02-03 05:26:00 Observatory:Cluster FM7 (Samba) Cadence:0.0000046 seconds
Stop:2016-09-14 08:00:15 Instrument:Wide Band Data (WBD) Resource:NumericalData
The following description applies to the Wideband Data (WBD) Plasma Wave Receivers on all four Cluster satellites, each satellite being uniquely identified by its number (1 through 4) or its given name (Rumba, Salsa, Samba, Tango, respectively). High time resolution calibrated waveform data sampled in one of 3 frequency bands in the range 0-577 kHz along one axis using either an electric field antenna or a magnetic search coil sensor. The dataset also includes instrument mode, data quality and the angles required to orient the measurement with respect to the magnetic field and to the GSE coordinate system. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW (Electric Fields and Waves) instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF (Spatio-Temporal Analysis of Field Fluctuations) instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data (generally the 77 kHz bandwidth mode) are sampled at 4.6 microseconds in the time domain (~4.7 milliseconds in the frequency domain using a standard 1024 point FFT). The lowest time resolution data (generally the 9.5 kHz bandwidth mode) are sampled at 36.5 microseconds in the time domain (~37.3 milliseconds in the frequency domain using a standard 1024 point FFT). The availability of these files depends on times of DSN and Panska Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www- pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (CAA) (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues and Caveats can be found at http://www- pw.physics.uiowa.edu/cluster/ by clicking on the links next to the Caution symbol in the listing on the left side of the web site. These documents are also available from the Documentation section of the CAA website. For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183, and the Cluster WBD User Guide archived at the CAA website in the Documentation section. ... CALIBRATION: ... The procedure used in computing the calibrated Electric Field and Magnetic Field values found in this file can be obtained from the Cluster WBD Calibration Report archived at the CAA website in the Documentation section. Because the calibration was applied in the time domain using simple equations the raw counts actually measured by the WBD instrument can be obtained by using these equations and solving for 'Raw Counts', keeping in mind that this number is an Integer ranging from 0 to 255. Since DC offset is a real number, the resultant when solving for raw counts will need to be converted to the nearest whole number. A sample IDL routine for reverse calibrating to obtain 'Raw Counts' is provided in the WBD Calibration Report archived at the CAA. ... CONVERSION TO FREQUENCY DOMAIN: ... In order to convert the WBD data to the frequency domain via an FFT, the following steps need to be carried out: 1) If Electric Field, first divide calibrated data values by 1000 to get V/m; 2) Apply window of preference, if any (such as Hann, etc.); 3) Divide data values by sqrt(2) to get back to the rms domain; 4) perform FFT (see Bandwidth variable notes for non-continuous modes and/or the WBD User Guide archived at the CAA); 5) divide by the noise bandwidth, which is equal to the sampling frequency divided by the FFT size (see table below for appropriate sampling frequency); 6) multiply by the appropriate constant for the window used, if any. These steps are more fully explained in the WBD Calibration Report archived at the CAA.... +--------------------------+ | Bandwidth | Sample Rate | |-----------|--------------| | 9.5 kHz | 27.443 kHz | | 19 kHz | 54.886 kHz | | 77 kHz | 219.544 kHz | +--------------------------+ COORDINATE SYSTEM USED: ... One axis measurements made in the Antenna Coordinate System, i.e., if electric field measurement, it will either be Ey or Ez, both of which are in the spin plane of the spacecraft, and if magnetic field measurement, it will either be Bx, along the spin axis, or By, in spin plane. The user of WBD data should refer to the WBD User Guide, archived at the CAA, Section 5.4.1 and Figure 5.3 for a description of the three orientation angles provided in these files. Since WBD measurements are made along one axis only, these three angles provide the only means for orienting the WBD measurements with respect to a geocentric coordinate system and to the magnetic field direction ...

32) Cluster Samba Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data at the ESA Cluster Science Archive maxmize
Resource ID:spase://VSPO/NumericalData/Cluster-Samba/WHISPER/CSA/PT0.2S
Start:2001-02-02 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:0.2 seconds
Stop:2016-09-14 08:00:05 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
Two main types of data resulted from WHISPER (Waves of HF and Sounder for Probing Electron Density by Relaxation) onboard Cluster: the total electron density at standard time resolutions of either 2.15 or 52 s, and electric field spectra in the frequency range 2?82 KHz with time resolutions of 1.7 or 3.4 seconds. Data products available from the Cluster Active Archive include: electron number density, electric spectral power density (natural waves), electric spectral power density from active and passive emission during sounding, and electric waveform power density (energy) in 0.2 second resolution. Ancillary data include density comparisons with PEACE and CIS measurements onboard Cluster; sounding times; housekeeping data; electron density in spin-resolution (4 seconds) and 1 minute averages; electron gyrofrequency in plasmasphere; instrument parameters during natural mode and active mode; active to passive spectral power density coded ratio; and caveats. Please note that WHISPER densities are used for calibrations of CLUSTER instruments, in particular particle instruments, which have difficulties to measure the colder part of the population, and EFW instrument, because spacecraft potential variations, currently used as a proxy of density variations, depend not only on the density but also on the energy of electrons. For more details, see "The Cluster Active Archive: Studying the Earth's Space Plasma Environment", edited by Dr. Harri Laakso, Matthew G. T. T. Taylor, C. Philippe Escoubet, from which this information was obtained.

33) Cluster 3 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Samba/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM7 (Samba) Cadence:2.14 seconds
Stop:2016-09-14 08:00:15 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

34) Cluster 3 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Samba/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM7 (Samba) Cadence:52 seconds
Stop:2016-09-14 08:00:15 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

35) Cluster II Samba Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2016-09-14 07:58:22 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

36) Cluster II Tango Prime Parameter Electric Field and Waves (EFW) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/EFW/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2016-09-14 07:58:19 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440-29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1-700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1-100/cm. There is also a frequency counter covering the range 10-200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Spherical Probe Electric Field and Waves experiment for the Cluster Mission, by G. Gustafsson et al., from which this information was obtained.

37) Cluster II Tango Prime Parameter Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/STAFF/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2016-09-14 07:58:20 Instrument:Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Resource:NumericalData
The Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) experiment provides magnetic field power spectral density values parallel and perpendicular to the magnetic field and the electric field power spectral density values for several frequency ranges. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission, by N. Cornilleau-Wehrlin et al., from which this information was obtained.

38) Cluster Tango WBD High Time Resolution Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster-Tango/WBD/DS.GIF.PT30S
Start:2001-02-03 05:26:00 Observatory:Cluster FM8 (Tango) Cadence:
Stop:2016-09-14 08:00:14 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains 30 s duration survey spectrogram plots from the WBD instrument on the Cluster spacecraft. The spectrograms are created by 1024 point FFTs and plotted with frequency on the vertical axis, increasing time on the horizontal, and color indicating power spectral density, in relative dB. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). Above the spectrogram plot are a line plot panel, followed by four status lines. The line plot panel at the top provides the gain state (0 to 75 dB, in 5 dB steps) of the instrument. The four status lines provide the following information according to the color code in the upper right corner: Data mode - whether from DSN mode (real time telemetry), or from BM2 mode (recorded onboard in Burst Mode 2) as digitally filtered or duty cycled. Antenna - the electric field (Ey or Ez) or the magnetic field (Bx or By) antenna used. Resolution - the data digitization level, which can be 1 bit, 4 bit or 8 bit. Translation - the translation from base frequency of 0 kHz. In the lower right-hand corner are the ephemeris values applicable to the start time of the plot. At the middle right-hand side are given the date and start time of the plot as well as the spacecraft number. The University of Iowa repository maintains two types of high time resolution spectrogram plots in GIF format: a ten minute (PT10M Display Cadence) and a 30 second time span (PT30S Display Cadence). Both types of files provide information on WBD gain and operational mode, the spectral data from one spacecraft, the start date and time and ephemeris data. Overview spectrograms are also available. The availability of these files depends on times of DSN and Pansak Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www-pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

39) Cluster 4 Wideband Data Plasma Wave Receiver/High Time Resolution Waveform Data maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Tango/WBD/PT0.0000046S
Start:2001-02-03 05:26:00 Observatory:Cluster FM8 (Tango) Cadence:0.0000046 seconds
Stop:2016-09-14 08:00:15 Instrument:Wide Band Data (WBD) Resource:NumericalData
The following description applies to the Wideband Data (WBD) Plasma Wave Receivers on all four Cluster satellites, each satellite being uniquely identified by its number (1 through 4) or its given name (Rumba, Salsa, Samba, Tango, respectively). High time resolution calibrated waveform data sampled in one of 3 frequency bands in the range 0-577 kHz along one axis using either an electric field antenna or a magnetic search coil sensor. The dataset also includes instrument mode, data quality and the angles required to orient the measurement with respect to the magnetic field and to the GSE coordinate system. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW (Electric Fields and Waves) instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF (Spatio-Temporal Analysis of Field Fluctuations) instrument as a sensor. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. The time resolution of the data shown in the plots is determined from the WBD instrument mode. The highest time resolution data (generally the 77 kHz bandwidth mode) are sampled at 4.6 microseconds in the time domain (~4.7 milliseconds in the frequency domain using a standard 1024 point FFT). The lowest time resolution data (generally the 9.5 kHz bandwidth mode) are sampled at 36.5 microseconds in the time domain (~37.3 milliseconds in the frequency domain using a standard 1024 point FFT). The availability of these files depends on times of DSN and Panska Ves ground station telemetry downlinks. A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at http://www- pw.physics.uiowa.edu/cluster/ and through the documentation section of the Cluster Active Archive (CAA) (http://caa.estec.esa.int/caa). Details on Cluster WBD Interpretation Issues and Caveats can be found at http://www- pw.physics.uiowa.edu/cluster/ by clicking on the links next to the Caution symbol in the listing on the left side of the web site. These documents are also available from the Documentation section of the CAA website. For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183, and the Cluster WBD User Guide archived at the CAA website in the Documentation section. ... CALIBRATION: ... The procedure used in computing the calibrated Electric Field and Magnetic Field values found in this file can be obtained from the Cluster WBD Calibration Report archived at the CAA website in the Documentation section. Because the calibration was applied in the time domain using simple equations the raw counts actually measured by the WBD instrument can be obtained by using these equations and solving for 'Raw Counts', keeping in mind that this number is an Integer ranging from 0 to 255. Since DC offset is a real number, the resultant when solving for raw counts will need to be converted to the nearest whole number. A sample IDL routine for reverse calibrating to obtain 'Raw Counts' is provided in the WBD Calibration Report archived at the CAA. ... CONVERSION TO FREQUENCY DOMAIN: ... In order to convert the WBD data to the frequency domain via an FFT, the following steps need to be carried out: 1) If Electric Field, first divide calibrated data values by 1000 to get V/m; 2) Apply window of preference, if any (such as Hann, etc.); 3) Divide data values by sqrt(2) to get back to the rms domain; 4) perform FFT (see Bandwidth variable notes for non-continuous modes and/or the WBD User Guide archived at the CAA); 5) divide by the noise bandwidth, which is equal to the sampling frequency divided by the FFT size (see table below for appropriate sampling frequency); 6) multiply by the appropriate constant for the window used, if any. These steps are more fully explained in the WBD Calibration Report archived at the CAA.... +--------------------------+ | Bandwidth | Sample Rate | |-----------|--------------| | 9.5 kHz | 27.443 kHz | | 19 kHz | 54.886 kHz | | 77 kHz | 219.544 kHz | +--------------------------+ COORDINATE SYSTEM USED: ... One axis measurements made in the Antenna Coordinate System, i.e., if electric field measurement, it will either be Ey or Ez, both of which are in the spin plane of the spacecraft, and if magnetic field measurement, it will either be Bx, along the spin axis, or By, in spin plane. The user of WBD data should refer to the WBD User Guide, archived at the CAA, Section 5.4.1 and Figure 5.3 for a description of the three orientation angles provided in these files. Since WBD measurements are made along one axis only, these three angles provide the only means for orienting the WBD measurements with respect to a geocentric coordinate system and to the magnetic field direction ...

40) Cluster Tango Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data at the ESA Cluster Science Archive maxmize
Resource ID:spase://VSPO/NumericalData/Cluster-Tango/WHISPER/CSA/PT0.2S
Start:2001-02-02 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:0.2 seconds
Stop:2016-09-14 07:59:52 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
Two main types of data resulted from WHISPER (Waves of HF and Sounder for Probing Electron Density by Relaxation) onboard Cluster: the total electron density at standard time resolutions of either 2.15 or 52 s, and electric field spectra in the frequency range 2?82 KHz with time resolutions of 1.7 or 3.4 seconds. Data products available from the Cluster Active Archive include: electron number density, electric spectral power density (natural waves), electric spectral power density from active and passive emission during sounding, and electric waveform power density (energy) in 0.2 second resolution. Ancillary data include density comparisons with PEACE and CIS measurements onboard Cluster; sounding times; housekeeping data; electron density in spin-resolution (4 seconds) and 1 minute averages; electron gyrofrequency in plasmasphere; instrument parameters during natural mode and active mode; active to passive spectral power density coded ratio; and caveats. Please note that WHISPER densities are used for calibrations of CLUSTER instruments, in particular particle instruments, which have difficulties to measure the colder part of the population, and EFW instrument, because spacecraft potential variations, currently used as a proxy of density variations, depend not only on the density but also on the energy of electrons. For more details, see "The Cluster Active Archive: Studying the Earth's Space Plasma Environment", edited by Dr. Harri Laakso, Matthew G. T. T. Taylor, C. Philippe Escoubet, from which this information was obtained.

41) Cluster 4 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Tango/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM8 (Tango) Cadence:2.14 seconds
Stop:2016-09-14 08:00:15 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

42) Cluster 4 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Tango/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM8 (Tango) Cadence:52 seconds
Stop:2016-09-14 08:00:15 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

43) Cluster II Tango Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2016-09-14 07:58:20 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

44) Cluster II Summary Parameter Electric Field and Waves (EFW) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster/EFW/SummaryParameter/60S
Start:2001-01-01 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:60 seconds
Stop:2016-09-14 07:58:16 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440-29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1-700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1-100/cm. There is also a frequency counter covering the range 10-200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Spherical Probe Electric Field and Waves experiment for the Cluster Mission, by G. Gustafsson et al., from which this information was obtained.

45) Cluster II Summary Parameter Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster/STAFF/SummaryParameter/60S
Start:2001-01-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:60 seconds
Stop:2016-09-14 07:58:16 Instrument:Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Resource:NumericalData
The Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) experiment provides magnetic field power spectral density values parallel and perpendicular to the magnetic field and the electric field power spectral density values for several frequency ranges. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission, by N. Cornilleau-Wehrlin et al., from which this information was obtained.

46) Cluster WBD Survey Dynamic Spectrogram Plot maxmize
Resource ID:spase://VWO/DisplayData/Cluster/WBD/Survey.PNG.PT2H
Start:2001-02-03 05:26:00 Observatory:Cluster FM5 (Rumba) Cadence:
Stop:2016-09-14 08:00:14 Instrument:Wide Band Data (WBD) Resource:DisplayData
This dataset contains survey spectrogram plots of varying time durations from the WBD Plasma Wave Receivers on the four Cluster spacecraft. Due to the nature of the WBD real-time operations at the DSN, data from all four spacecraft are not always available. The time span of these plots varies based on the time span of the telemetry received in real-time from the DSN and Panska Ves ground stations and can range from 30 minutes to 8 hours, 2 hours being typical. Panels are included in the overview plots for all of the spacecraft for which WBD data are available at any given time. The spectrograms are created by 1024 point FFTs and plotted with frequency in kHz on the vertical axis, increasing time on the horizontal, and color indicating the power spectral density. The AC electric field data are obtained by using one of the two 88m spin plane electric field antennas of the EFW instrument as a sensor. The AC magnetic field data are obtained by using one of the two search coil magnetometers (one in the spin plane, the other along the spin axis) of the STAFF instrument as a sensor. When the data shown in the overview plot are from an electric field antenna, the power spectral density is given in units of V^2/m^2/Hz. When the data shown in the overview plot are the WBD magnetic field measurements, the power spectral density is given in relative dB. The WBD antenna used is marked on the left-hand side of each plot panel, and the spacecraft name and number are provided on the right-hand side of each panel. Below the time labels on the horizontal axis, are the ephemeris values applicable to the times marked on the horizontal axis. The ephemeris values are provided for the spacecraft whose data are shown in the bottom panel of the plot, just above the time axis labels. These ephemeris values are provided only as an indication of the general location of the Cluster quartet within the magnetosphere. Due to varying spacecraft separations, the ephemeris values for the spacecraft shown in the other plot panels may be considerably different from the values given for the spacecraft in the bottom panel. At the very bottom of the page are given the date and start time of the plots. At the top of the page, the WBD mode is noted, along with the FFT length and overlap. The WBD data are obtained in one of three filter bandwidth modes: (1) 9.5 kHz, (2) 19 kHz, or (3) 77 kHz. The minimum frequency of each of these three frequency bands can be shifted up (converted) from the default 0 kHz base frequency by 125.454, 250.908 or 501.816 kHz. There will typically be a separate survey spectrogram plot for each operating mode. The time resolution of the data shown in the plots is determined from the WBD instrument mode and FFT length. The highest time resolution data are sampled at 4.6 microseconds in the time domain, 4.7 milliseconds in the frequency domain (generally the 77 kHz bandwidth mode). The lowest time resolution data are sampled at 36.5 microseconds in the time domain, 37.3 milliseconds in the frequency domain (generally the 9.5 kHz bandwidth mode). When data from multiple spacecraft are shown in the overview plots, the time span in which WBD data are available for each spacecraft may be different. Periods when no data were available will appear white on the overview plots. On the lower right-hand corner of the page, UIowa appears next to the date on which the plot was generated in the format YYMMDD. Please note that during operations in certain magnetospheric regions, the WBD Plasma Wave Receiver may cycle between electric and magnetic field antennas or through the 125.454 kHz, 250.908 kHz, and 501.816 kHz conversion frequencies. When the instrument cycles through different modes, separate ps overview plots are generated for each antenna or conversion frequency used over the entire duration of the operation. In these plots, only data from one mode are shown on each plot, and the data are dilated across the intervals when another mode was used. The modes used and the length of the cycling intervals are provided on the left-hand side of the ps overview plot, along with a note that the plot is not intended for publication. Please contact the WBD PI if you wish to publish or present data from periods with cyclical switching between instrument modes. Higher time resolution spectrograms are also available for each spacecraft separately. These data are presented as ten minute time span and 30 second time span GIF image files. Details on Cluster WBD Interpretation Issues can be found at http://www-pw.physics.uiowa.edu/cluster/interpretation_issues/interpretation.html A list of the status of the WBD instrument on each spacecraft, the telemetry time spans, operating modes and other details are available under Science Data Availability on the University of Iowa Cluster WBD web site at (http://www-pw.physics.uiowa.edu/cluster/) and through the documentation section of the Cluster Active Archive (http://caa.estec.esa.int/caa). For further details on the Cluster WBD data products see Pickett, J.S., et al., "Cluster Wideband Data Products in the Cluster Active Archive" in _The Cluster Active Archive_, 2010, Springer-Verlag, pp 169-183.

47) Cluster WBD Spectrograms maxmize
Resource ID:spase://VSPO/DisplayData/Cluster/WBD/UIOWA
Start:2000-12-10 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:
Stop:2016-09-14 07:59:48 Instrument:Wide Band Data (WBD) Resource:DisplayData
Cluster WBD Spectrograms, E and B in 25 Hz to 577 kHz range

48) Cluster WHISPER Combined Daily Dynamic Spectrograms maxmize
Resource ID:spase://VWO/DisplayData/Cluster/WHISPER/DS.JPG.P1D
Start:2001-01-01 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:
Stop:2013-12-31 23:59:59 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:DisplayData
These WHISPER daily dynamic spectrograms from each of the four Cluster spacecraft are plots of the received signal (the color scale indicates the voltage spectral density as Vrms Hz^-1/2) as a function of receiver frequency (on vertical axis) and time (horizontal axis). At the top of the image is the name of the instrument and date and above each plot the overflow status is indicated by a color code. Each spectrogram spans a frequency range from 2 through 80 kHz. Beneath the time labels on the horizontal axis are ephemeris data: position of the spacecraft in radial distance (Earth radii), latitude, and local time (GSE coordinates). The plots include data when the instruments are operating in both passive and active mode.

49) Cluster II Summary Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster/WHISPER/SummaryParameter/60S
Start:2001-01-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:60 seconds
Stop:2016-09-14 07:58:16 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

50) Cluster Rumba Electric Field and Waves (EFW) Data at the ESA Cluster Science Archive maxmize
Resource ID:spase://VSPO/NumericalData/Cluster2-Rumba/EFW/CSA/PT0.0001S
Start:2001-01-01 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:0.0001 seconds
Stop:2016-09-14 07:59:49 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The Cluster Electric Field and Waves (EFW) data available from the Cluster Active Archive include: (1) The instantaneous spin-plane components of the electric field vectors with time resolution down to 0.1 millisecond, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) The AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; and (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz. Level 1 is the raw data for reference puprose only and is not accessible on CAA. Both Level 2 (at 0.2 second and full resolution of 0.04 second) and Level 3 (4-second resolution) data include spacecraft potential; 3D Electric Field in Inverted Spin Reference 2 system (ISR2); 3D Electric Field in GSE; plasma (ExB) drift velocity in ISR2; and plasma (ExB) drift velocity in GSE. In addition, Level 2 products include data in burst mode of time resolutions up to 36,000 samples/s: spacecraft potential, 2D electric field data in ISR2 and 3D magnetic field data in ISR2. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details, see "The Cluster Active Archive: Studying the Earth's Space Plasma Environment", edited by Dr. Harri Laakso, Matthew G. T. T. Taylor, C. Philippe Escoubet.

Showing 1 - 50Next