Search results 80 matches in 0.003 seconds
Showing 1 - 50Next

1) Akebono PWS NPW Data maxmize
Resource ID:spase://VWO/NumericalData/Akebono/PWS/E.NPW.PT2S
Start:1989-02-24 13:32:00 Observatory:Akebono Cadence:2 seconds
Stop:2014-07-23 01:02:40 Instrument:Plasma Wave Observation and Sounder Experiments (PWS) Resource:NumericalData
The Plasma Wave Observation and Sounder Experiment (PWS) observes both natural (NPW) and stimulated (SPW) plasma waves. The frequency range of the NPW system is 20 kHz to 5.12 MHz. These CDF data consist of Electric Field intensities measured by the PWS Recevier 1 (RX1) and Receiver 2 (RX2) units.

2) Cluster II Rumba Prime Parameter Active Spacecraft Potential Control (ASPOC) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/ASPOC/PrimeParameter/PT4S
Start:2001-01-30 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:25 Instrument:Active Spacecraft Potential Control (ASPOC) Resource:NumericalData
The ASPOC instrument is a single unit consisting of an electronics box and two cylindrical ion emitter modules. The emitters produce indium ions at approximately 6 KeV, in a current of less than 50 microamps. This is done by field evaporation of indium in the apex field of a needle. In the basic feedback mode of operation, a measurement of the spacecraft potential is supplied to the instrument from either the electric field experiment (EFW) or the electron analyzer (PEACE). This information is then used to adjust the emission current to reduce the spacecraft potential to some predetermined value. By default, priority is given to the EFW data, because of the higher resolution (0.034 V vs. ~1.4 V) and the more straightforward way in which the potential is derived. A calibration mode will measure the current voltage characteristics of the spacecraft, at the beginning of the mission and occasionally later to account for changes in the photoemission properties of the surface. This measurement is carried out by sweeping the ion emission current in incremental steps over some convenient range, allowing simultaneous measurements of the spacecraft potential. The length of each step is 2 to 4 spin periods. In addition to providing an improved environment for other experiments, ASPOC will permit scientific investigations of the photoelectric characteristics of the dependence of the spacecraft potential on plasma parameters, and of spacecraft charging in different plasma environments to be carried out in the so called active mode. For more details of the Cluster mission, the spacecraft, and its instruments, see the report 'Cluster: mission, payload and supporting activities,' March 1993, ESA SP 1159, and the included article 'Active Spacecraft Potential Control: an ion emitter experiment for Cluster,' by W. Riedler et al., from which this information was obtained.

3) Cluster II Rumba Prime Parameter Cluster Ion Spectrometry (CIS) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/CIS/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:25 Instrument:Cluster Ion Spectrometry (CIS) Resource:NumericalData
This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02-40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Cluster Ion Spectrometry Experiment, by H. Reme et al., from which this information was obtained.

4) Cluster II Rumba Prime Parameter Electron Drift Instrument (EDI) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/EDI/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:24 Instrument:Electron Drift Instrument (EDI) Resource:NumericalData
This instrument (EDI: Electron Drift Instrument) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one gyration. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by the use of different electron energies, be determined separately. The fundamental time step to determine the new parameters and direct the beams and the detectors is 2 ms. Inter-experiment links include: magnetic field information from FGM and STAFF, a blanking pulse received from WHISPER to warn of possible interference from that active experiment, and a similar blanking pulse sent to PEACE when the EDI electron beam could interfere with the PEACE electron measurement. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Electron Drift Instrument for Cluster, by G. Paschmann et al., from which this information was obtained.

5) Cluster II Rumba Prime Parameter Electric Field and Waves (EFW) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/EFW/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:24 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440-29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1-700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1-100/cm. There is also a frequency counter covering the range 10-200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Spherical Probe Electric Field and Waves experiment for the Cluster Mission, by G. Gustafsson et al., from which this information was obtained.

6) Cluster Rumba Spin Resolution Fluxgate Magnetometer (FGM) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/FGM/SpinResolution/4S
Start:2001-01-30 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:24 Instrument:Fluxgate Magnetometer (FGM) Resource:NumericalData
This dataset contains spin resolution measurements of the magnetic field vector from the fluxgate magnetometer (FGM) instrument on the Cluster Rumba spacecraft.

7) Cluster II Rumba Unvalidated Prime Parameter Fluxgate Magnetometer (FGM) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/FGM/UnvalidatedParameter/4S
Start:2006-01-01 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:24 Instrument:Fluxgate Magnetometer (FGM) Resource:NumericalData
This dataset contains spin resolution unvalidated prime parameter measurements of the magnetic field vector from the fluxgate magnetometer (FGM) instrument on the Cluster 2 Rumba spacecraft. Unvalidated FGM data might sometimes contain artefacts such as spikes (duration ~ 1 spin), or short rotations (few spins). Very occasionally the data contain many spikes over several hours. Please contact Elizabeth Lucek (e.lucek@imperial.ac.uk) for more information regarding possible artefacts in specific intervals of data. The unvalidated prime parameter Data Set does not contain the spacecraft position data or additional range and telemetry mode information that the CAA parameter data set does contain.

8) Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment (PEACE) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/PEACE/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:25 Instrument:Plasma Electron and Current Experiment (PEACE) Resource:NumericalData
The primary task of this instrument (PEACE: Plasma Electrons and Currents Experiment) is to obtain the velocity moments of the distribution function of electrons as frequently and as accurately as the spacecraft telemetry will allow. Detector counts are collected in energy, polar-angle, and azimuth-angle bins to form a three-dimensional matrix. Two sensors are used: LEEA (low-energy electron analyzer) and HEEA (high-energy electron analyzer). The energy coverage is from 0.67 eV to 30 KeV in 92 levels. The first 16 levels are equally spaced linearly up to 10.7 eV; the remainder are logarithmically spaced. Both sensors can use the full range, but the HEEA will normally operate over a higher energy range than the LEEA. The LEEA specializes in coverage of the energies from 0.7-10 eV, and has a geometric factor one fifth that of the HEAA. Both sensors consist of hemispherical electrostatic analyzers of the top-hat type and a detector in the form of an annular micro-channel plate with a position-sensitive readout. Each sensor covers the range 0-180 degrees with respect to the spin axis, and they are mounted opposite each other with a view perpendicular to the spin axis, thus covering the complete angular range in a half rotation of the spacecraft. The field of view perpendicular to the fan is 2 degrees for the LEEA and 5.6 degrees for the HEEA. Energy resolution (Delta-E)/E is 0.13 for LEEA and 0.16 for HEEA. There are four sweep modes, synchronized to the spin period (4 s), to vary the azimuthal angular resolution. The spin phasing can be made coincident with that of the CIS instrument, to ensure that the electron and ion moments will be measured simultaneously. On-board processing is used to calculate the moments of the distribution with an accuracy of 1% and to select suitable parts of the complete distribution for transmission. The normal science data format is based on one spin period, and consists of core data followed by other optional distributions as can be fit into the available telemetry for that spin. The core data (moments, spacecraft potential, and pitch angle distribution) are always transmitted (if the spin is nominal). The next distribution is transmitted if, before the end of the spin, all the previous data have been sent. Thus the next spin of data will be transmitted slightly late, but all of its core data will be transmitted before the following spin of data is started on. Eventually the transmission will catch up and be able to transmit the distribution after the core again, but only after some time. This applies at all telemetry rates. The instrument can adapt automatically to six different telemetry rates: a basic 1.52 Kbps rate (CIS priority); a normal 2.52 Kbps rate; an enhanced PEACE priority rate of 3.54 Kbps; and three burst mode rates, with a maximum of 15.98 Kbps. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article PEACE: a Plasma Electron and Current Experiment, by A. D. Johnstone et al., from which this information was obtained.

9) Cluster II Rumba Prime Parameter Research with Adaptive Particle Imaging Detectors (RAPID) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/RAPID/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:24 Instrument:Research with Adaptive Particle Imaging Detectors (RAPID) Resource:NumericalData
The dual-sensor spectrometer RAPID (Research with Adaptive Particle Imaging Detectors) analyzes suprathermal plasma distributions in the energy range from 20-400 KeV for electrons and from 2 KeV/nucleon to 1.50 MeV/nucleon for ions. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article RAPID: The Imaging Energetic Particle Spectrometer on Cluster, by B. Wilken et al., from which this information was obtained.

10) Cluster II Rumba Prime Parameter Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/STAFF/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:25 Instrument:Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Resource:NumericalData
The Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) experiment provides magnetic field power spectral density values parallel and perpendicular to the magnetic field and the electric field power spectral density values for several frequency ranges. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission, by N. Cornilleau-Wehrlin et al., from which this information was obtained.

11) Cluster II Rumba Wide Band Data (WBD) Prime Parameters maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/WBD/PrimeParameter/PT0.02S
Start:2001-02-04 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:0.02 seconds
Stop:2014-07-23 01:02:25 Instrument:Wide Band Data (WBD) Resource:NumericalData
The WBD (Wide Band Data) investigation is designed to provide high-resolution frequency/time spectra of plasma waves in the Earth's magnetosphere. These data files contain information on the band width, resolution, antenna angles, offsets, magnetic and electric field information. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``The Wideband Plasma Wave Investigation,'' by D. A. Gurnett et al., from which this information was obtained.

12) Cluster 1 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Rumba/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM5 (Rumba) Cadence:2.14 seconds
Stop:2014-07-23 01:02:41 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

13) Cluster 1 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Rumba/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM5 (Rumba) Cadence:52 seconds
Stop:2014-07-23 01:02:41 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

14) Cluster II Rumba Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Rumba/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM5 (Rumba) Cadence:4 seconds
Stop:2014-07-23 01:02:24 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

15) Cluster II Salsa Prime Parameter Active Spacecraft Potential Control (ASPOC) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/ASPOC/PrimeParameter/PT4S
Start:2001-01-30 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-07-23 01:01:15 Instrument:Active Spacecraft Potential Control (ASPOC) Resource:NumericalData
The ASPOC instrument is a single unit consisting of an electronics box and two cylindrical ion emitter modules. The emitters produce indium ions at approximately 6 KeV, in a current of less than 50 microamps. This is done by field evaporation of indium in the apex field of a needle. In the basic feedback mode of operation, a measurement of the spacecraft potential is supplied to the instrument from either the electric field experiment (EFW) or the electron analyzer (PEACE). This information is then used to adjust the emission current to reduce the spacecraft potential to some predetermined value. By default, priority is given to the EFW data, because of the higher resolution (0.034 V vs. ~1.4 V) and the more straightforward way in which the potential is derived. A calibration mode will measure the current voltage characteristics of the spacecraft, at the beginning of the mission and occasionally later to account for changes in the photoemission properties of the surface. This measurement is carried out by sweeping the ion emission current in incremental steps over some convenient range, allowing simultaneous measurements of the spacecraft potential. The length of each step is 2 to 4 spin periods. In addition to providing an improved environment for other experiments, ASPOC will permit scientific investigations of the photoelectric characteristics of the dependence of the spacecraft potential on plasma parameters, and of spacecraft charging in different plasma environments to be carried out in the so called active mode. For more details of the Cluster mission, the spacecraft, and its instruments, see the report 'Cluster: mission, payload and supporting activities,' March 1993, ESA SP 1159, and the included article 'Active Spacecraft Potential Control: an ion emitter experiment for Cluster,' by W. Riedler et al., from which this information was obtained.

16) Cluster II Salsa Prime Parameter Cluster Ion Spectrometry (CIS) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/CIS/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2009-01-31 23:59:59 Instrument:Cluster Ion Spectrometry (CIS) Resource:NumericalData
This instrument never worked and there is no data. This instrument (CIS: Cluster Ion Spectrometry) on the other spacecraft is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02-40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Cluster Ion Spectrometry Experiment, by H. Reme et al., from which this information was obtained.

17) Cluster II Salsa Prime Parameter Electron Drift Instrument (EDI) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/EDI/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-07-23 01:01:15 Instrument:Electron Drift Instrument (EDI) Resource:NumericalData
This instrument (EDI: Electron Drift Instrument) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one gyration. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by the use of different electron energies, be determined separately. The fundamental time step to determine the new parameters and direct the beams and the detectors is 2 ms. Inter-experiment links include: magnetic field information from FGM and STAFF, a blanking pulse received from WHISPER to warn of possible interference from that active experiment, and a similar blanking pulse sent to PEACE when the EDI electron beam could interfere with the PEACE electron measurement. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Electron Drift Instrument for Cluster, by G. Paschmann et al., from which this information was obtained.

18) Cluster II Salsa Prime Parameter Electric Field and Waves (EFW) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/EFW/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-07-23 01:01:15 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440-29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1-700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1-100/cm. There is also a frequency counter covering the range 10-200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Spherical Probe Electric Field and Waves experiment for the Cluster Mission, by G. Gustafsson et al., from which this information was obtained.

19) Cluster Salsa Spin Resolution Fluxgate Magnetometer (FGM) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/FGM/SpinResolution/4S
Start:2001-01-30 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-07-23 01:01:15 Instrument:Fluxgate Magnetometer (FGM) Resource:NumericalData
This dataset contains spin resolution measurements of the magnetic field vector from the fluxgate magnetometer (FGM) instrument on the Cluster Salsa spacecraft.

20) Cluster II Salsa Unvalidated Prime Parameter Fluxgate Magnetometer (FGM) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/FGM/UnvalidatedParameter/4S
Start:2006-01-01 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-07-23 01:01:15 Instrument:Fluxgate Magnetometer (FGM) Resource:NumericalData
This dataset contains spin resolution unvalidated prime parameter measurements of the magnetic field vector from the fluxgate magnetometer (FGM) instrument on the Cluster 2 Salsa spacecraft. Unvalidated FGM data might sometimes contain artefacts such as spikes (duration ~ 1 spin), or short rotations (few spins). Very occasionally the data contain many spikes over several hours. Please contact Elizabeth Lucek (e.lucek@imperial.ac.uk) for more information regarding possible artefacts in specific intervals of data. The unvalidated prime parameter Data Set does not contain the spacecraft position data or additional range and telemetry mode information that the CAA parameter data set does contain.

21) Cluster II Salsa Prime Parameter Plasma Electron and Current Experiment (PEACE) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/PEACE/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-07-23 01:01:15 Instrument:Plasma Electron and Current Experiment (PEACE) Resource:NumericalData
The primary task of this instrument (PEACE: Plasma Electrons and Currents Experiment) is to obtain the velocity moments of the distribution function of electrons as frequently and as accurately as the spacecraft telemetry will allow. Detector counts are collected in energy, polar-angle, and azimuth-angle bins to form a three-dimensional matrix. Two sensors are used: LEEA (low-energy electron analyzer) and HEEA (high-energy electron analyzer). The energy coverage is from 0.67 eV to 30 KeV in 92 levels. The first 16 levels are equally spaced linearly up to 10.7 eV; the remainder are logarithmically spaced. Both sensors can use the full range, but the HEEA will normally operate over a higher energy range than the LEEA. The LEEA specializes in coverage of the energies from 0.7-10 eV, and has a geometric factor one fifth that of the HEAA. Both sensors consist of hemispherical electrostatic analyzers of the top-hat type and a detector in the form of an annular micro-channel plate with a position-sensitive readout. Each sensor covers the range 0-180 degrees with respect to the spin axis, and they are mounted opposite each other with a view perpendicular to the spin axis, thus covering the complete angular range in a half rotation of the spacecraft. The field of view perpendicular to the fan is 2 degrees for the LEEA and 5.6 degrees for the HEEA. Energy resolution (Delta-E)/E is 0.13 for LEEA and 0.16 for HEEA. There are four sweep modes, synchronized to the spin period (4 s), to vary the azimuthal angular resolution. The spin phasing can be made coincident with that of the CIS instrument, to ensure that the electron and ion moments will be measured simultaneously. On-board processing is used to calculate the moments of the distribution with an accuracy of 1% and to select suitable parts of the complete distribution for transmission. The normal science data format is based on one spin period, and consists of core data followed by other optional distributions as can be fit into the available telemetry for that spin. The core data (moments, spacecraft potential, and pitch angle distribution) are always transmitted (if the spin is nominal). The next distribution is transmitted if, before the end of the spin, all the previous data have been sent. Thus the next spin of data will be transmitted slightly late, but all of its core data will be transmitted before the following spin of data is started on. Eventually the transmission will catch up and be able to transmit the distribution after the core again, but only after some time. This applies at all telemetry rates. The instrument can adapt automatically to six different telemetry rates: a basic 1.52 Kbps rate (CIS priority); a normal 2.52 Kbps rate; an enhanced PEACE priority rate of 3.54 Kbps; and three burst mode rates, with a maximum of 15.98 Kbps. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article PEACE: a Plasma Electron and Current Experiment, by A. D. Johnstone et al., from which this information was obtained.

22) Cluster II Salsa Prime Parameter Research with Adaptive Particle Imaging Detectors (RAPID) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/RAPID/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-07-23 01:01:15 Instrument:Research with Adaptive Particle Imaging Detectors (RAPID) Resource:NumericalData
The dual-sensor spectrometer RAPID (Research with Adaptive Particle Imaging Detectors) analyzes suprathermal plasma distributions in the energy range from 20-400 KeV for electrons and from 2 KeV/nucleon to 1.50 MeV/nucleon for ions. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article RAPID: The Imaging Energetic Particle Spectrometer on Cluster, by B. Wilken et al., from which this information was obtained.

23) Cluster II Salsa Prime Parameter Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/STAFF/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-07-23 01:01:15 Instrument:Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Resource:NumericalData
The Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) experiment provides magnetic field power spectral density values parallel and perpendicular to the magnetic field and the electric field power spectral density values for several frequency ranges. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission, by N. Cornilleau-Wehrlin et al., from which this information was obtained.

24) Cluster 2 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Salsa/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM6 (Salsa) Cadence:2.14 seconds
Stop:2014-07-23 01:02:40 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

25) Cluster 2 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Salsa/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM6 (Salsa) Cadence:52 seconds
Stop:2014-07-23 01:02:40 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

26) Cluster II Salsa Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Salsa/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM6 (Salsa) Cadence:4 seconds
Stop:2014-07-23 01:01:15 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

27) Cluster II Samba Prime Parameter Active Spacecraft Potential Control (ASPOC) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/ASPOC/PrimeParameter/PT4S
Start:2001-01-30 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:57 Instrument:Active Spacecraft Potential Control (ASPOC) Resource:NumericalData
The ASPOC instrument is a single unit consisting of an electronics box and two cylindrical ion emitter modules. The emitters produce indium ions at approximately 6 KeV, in a current of less than 50 microamps. This is done by field evaporation of indium in the apex field of a needle. In the basic feedback mode of operation, a measurement of the spacecraft potential is supplied to the instrument from either the electric field experiment (EFW) or the electron analyzer (PEACE). This information is then used to adjust the emission current to reduce the spacecraft potential to some predetermined value. By default, priority is given to the EFW data, because of the higher resolution (0.034 V vs. ~1.4 V) and the more straightforward way in which the potential is derived. A calibration mode will measure the current voltage characteristics of the spacecraft, at the beginning of the mission and occasionally later to account for changes in the photoemission properties of the surface. This measurement is carried out by sweeping the ion emission current in incremental steps over some convenient range, allowing simultaneous measurements of the spacecraft potential. The length of each step is 2 to 4 spin periods. In addition to providing an improved environment for other experiments, ASPOC will permit scientific investigations of the photoelectric characteristics of the dependence of the spacecraft potential on plasma parameters, and of spacecraft charging in different plasma environments to be carried out in the so called active mode. For more details of the Cluster mission, the spacecraft, and its instruments, see the report 'Cluster: mission, payload and supporting activities,' March 1993, ESA SP 1159, and the included article 'Active Spacecraft Potential Control: an ion emitter experiment for Cluster,' by W. Riedler et al., from which this information was obtained.

28) Cluster II Samba Prime Parameter Cluster Ion Spectrometry (CIS) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/CIS/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:57 Instrument:Cluster Ion Spectrometry (CIS) Resource:NumericalData
This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02-40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Cluster Ion Spectrometry Experiment, by H. Reme et al., from which this information was obtained.

29) Cluster II Samba Prime Parameter Electron Drift Instrument (EDI) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/EDI/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:56 Instrument:Electron Drift Instrument (EDI) Resource:NumericalData
This instrument (EDI: Electron Drift Instrument) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one gyration. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by the use of different electron energies, be determined separately. The fundamental time step to determine the new parameters and direct the beams and the detectors is 2 ms. Inter-experiment links include: magnetic field information from FGM and STAFF, a blanking pulse received from WHISPER to warn of possible interference from that active experiment, and a similar blanking pulse sent to PEACE when the EDI electron beam could interfere with the PEACE electron measurement. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Electron Drift Instrument for Cluster, by G. Paschmann et al., from which this information was obtained.

30) Cluster II Samba Prime Parameter Electric Field and Waves (EFW) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/EFW/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:56 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440-29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1-700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1-100/cm. There is also a frequency counter covering the range 10-200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Spherical Probe Electric Field and Waves experiment for the Cluster Mission, by G. Gustafsson et al., from which this information was obtained.

31) Cluster Samba Spin Resolution Fluxgate Magnetometer (FGM) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/FGM/SpinResolution/4S
Start:2001-01-30 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:56 Instrument:Fluxgate Magnetometer (FGM) Resource:NumericalData
This dataset contains spin resolution measurements of the magnetic field vector from the fluxgate magnetometer (FGM) instrument on the Cluster Samba spacecraft.

32) Cluster II Samba Unvalidated Prime Parameter Fluxgate Magnetometer (FGM) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/FGM/UnvalidatedParameter/4S
Start:2006-01-01 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:56 Instrument:Fluxgate Magnetometer (FGM) Resource:NumericalData
This dataset contains spin resolution unvalidated prime parameter measurements of the magnetic field vector from the fluxgate magnetometer (FGM) instrument on the Cluster 2 Samba spacecraft. Unvalidated FGM data might sometimes contain artefacts such as spikes (duration ~ 1 spin), or short rotations (few spins). Very occasionally the data contain many spikes over several hours. Please contact Elizabeth Lucek (e.lucek@imperial.ac.uk) for more information regarding possible artefacts in specific intervals of data. The unvalidated prime parameter Data Set does not contain the spacecraft position data or additional range and telemetry mode information that the CAA parameter data set does contain.

33) Cluster II Samba Prime Parameter Plasma Electron and Current Experiment (PEACE) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/PEACE/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:57 Instrument:Plasma Electron and Current Experiment (PEACE) Resource:NumericalData
The primary task of this instrument (PEACE: Plasma Electrons and Currents Experiment) is to obtain the velocity moments of the distribution function of electrons as frequently and as accurately as the spacecraft telemetry will allow. Detector counts are collected in energy, polar-angle, and azimuth-angle bins to form a three-dimensional matrix. Two sensors are used: LEEA (low-energy electron analyzer) and HEEA (high-energy electron analyzer). The energy coverage is from 0.67 eV to 30 KeV in 92 levels. The first 16 levels are equally spaced linearly up to 10.7 eV; the remainder are logarithmically spaced. Both sensors can use the full range, but the HEEA will normally operate over a higher energy range than the LEEA. The LEEA specializes in coverage of the energies from 0.7-10 eV, and has a geometric factor one fifth that of the HEAA. Both sensors consist of hemispherical electrostatic analyzers of the top-hat type and a detector in the form of an annular micro-channel plate with a position-sensitive readout. Each sensor covers the range 0-180 degrees with respect to the spin axis, and they are mounted opposite each other with a view perpendicular to the spin axis, thus covering the complete angular range in a half rotation of the spacecraft. The field of view perpendicular to the fan is 2 degrees for the LEEA and 5.6 degrees for the HEEA. Energy resolution (Delta-E)/E is 0.13 for LEEA and 0.16 for HEEA. There are four sweep modes, synchronized to the spin period (4 s), to vary the azimuthal angular resolution. The spin phasing can be made coincident with that of the CIS instrument, to ensure that the electron and ion moments will be measured simultaneously. On-board processing is used to calculate the moments of the distribution with an accuracy of 1% and to select suitable parts of the complete distribution for transmission. The normal science data format is based on one spin period, and consists of core data followed by other optional distributions as can be fit into the available telemetry for that spin. The core data (moments, spacecraft potential, and pitch angle distribution) are always transmitted (if the spin is nominal). The next distribution is transmitted if, before the end of the spin, all the previous data have been sent. Thus the next spin of data will be transmitted slightly late, but all of its core data will be transmitted before the following spin of data is started on. Eventually the transmission will catch up and be able to transmit the distribution after the core again, but only after some time. This applies at all telemetry rates. The instrument can adapt automatically to six different telemetry rates: a basic 1.52 Kbps rate (CIS priority); a normal 2.52 Kbps rate; an enhanced PEACE priority rate of 3.54 Kbps; and three burst mode rates, with a maximum of 15.98 Kbps. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article PEACE: a Plasma Electron and Current Experiment, by A. D. Johnstone et al., from which this information was obtained.

34) Cluster II Samba Prime Parameter Research with Adaptive Particle Imaging Detectors (RAPID) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/RAPID/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:57 Instrument:Research with Adaptive Particle Imaging Detectors (RAPID) Resource:NumericalData
The dual-sensor spectrometer RAPID (Research with Adaptive Particle Imaging Detectors) analyzes suprathermal plasma distributions in the energy range from 20-400 KeV for electrons and from 2 KeV/nucleon to 1.50 MeV/nucleon for ions. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article RAPID: The Imaging Energetic Particle Spectrometer on Cluster, by B. Wilken et al., from which this information was obtained.

35) Cluster II Samba Prime Parameter Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/STAFF/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:57 Instrument:Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Resource:NumericalData
The Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) experiment provides magnetic field power spectral density values parallel and perpendicular to the magnetic field and the electric field power spectral density values for several frequency ranges. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission, by N. Cornilleau-Wehrlin et al., from which this information was obtained.

36) Cluster 3 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Samba/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM7 (Samba) Cadence:2.14 seconds
Stop:2014-07-23 01:02:40 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

37) Cluster 3 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Samba/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM7 (Samba) Cadence:52 seconds
Stop:2014-07-23 01:02:40 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

38) Cluster II Samba Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Samba/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM7 (Samba) Cadence:4 seconds
Stop:2014-07-23 01:01:56 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

39) Cluster II Tango Prime Parameter Active Spacecraft Potential Control (ASPOC) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/ASPOC/PrimeParameter/PT4S
Start:2001-01-30 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Active Spacecraft Potential Control (ASPOC) Resource:NumericalData
The ASPOC instrument is a single unit consisting of an electronics box and two cylindrical ion emitter modules. The emitters produce indium ions at approximately 6 KeV, in a current of less than 50 microamps. This is done by field evaporation of indium in the apex field of a needle. In the basic feedback mode of operation, a measurement of the spacecraft potential is supplied to the instrument from either the electric field experiment (EFW) or the electron analyzer (PEACE). This information is then used to adjust the emission current to reduce the spacecraft potential to some predetermined value. By default, priority is given to the EFW data, because of the higher resolution (0.034 V vs. ~1.4 V) and the more straightforward way in which the potential is derived. A calibration mode will measure the current voltage characteristics of the spacecraft, at the beginning of the mission and occasionally later to account for changes in the photoemission properties of the surface. This measurement is carried out by sweeping the ion emission current in incremental steps over some convenient range, allowing simultaneous measurements of the spacecraft potential. The length of each step is 2 to 4 spin periods. In addition to providing an improved environment for other experiments, ASPOC will permit scientific investigations of the photoelectric characteristics of the dependence of the spacecraft potential on plasma parameters, and of spacecraft charging in different plasma environments to be carried out in the so called active mode. For more details of the Cluster mission, the spacecraft, and its instruments, see the report 'Cluster: mission, payload and supporting activities,' March 1993, ESA SP 1159, and the included article 'Active Spacecraft Potential Control: an ion emitter experiment for Cluster,' by W. Riedler et al., from which this information was obtained.

40) Cluster II Tango Prime Parameter Cluster Ion Spectrometry (CIS) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/CIS/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Cluster Ion Spectrometry (CIS) Resource:NumericalData
This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02-40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Cluster Ion Spectrometry Experiment, by H. Reme et al., from which this information was obtained.

41) Cluster II Tango Prime Parameter Electron Drift Instrument (EDI) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/EDI/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Electron Drift Instrument (EDI) Resource:NumericalData
This instrument (EDI: Electron Drift Instrument) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one gyration. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by the use of different electron energies, be determined separately. The fundamental time step to determine the new parameters and direct the beams and the detectors is 2 ms. Inter-experiment links include: magnetic field information from FGM and STAFF, a blanking pulse received from WHISPER to warn of possible interference from that active experiment, and a similar blanking pulse sent to PEACE when the EDI electron beam could interfere with the PEACE electron measurement. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Electron Drift Instrument for Cluster, by G. Paschmann et al., from which this information was obtained.

42) Cluster II Tango Prime Parameter Electric Field and Waves (EFW) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/EFW/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Electric Field and Waves (EFW) Resource:NumericalData
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440-29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1-700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1-100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1-100/cm. There is also a frequency counter covering the range 10-200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Spherical Probe Electric Field and Waves experiment for the Cluster Mission, by G. Gustafsson et al., from which this information was obtained.

43) Cluster Tango Spin Resolution Fluxgate Magnetometer (FGM) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/FGM/SpinResolution/4S
Start:2001-01-30 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Fluxgate Magnetometer (FGM) Resource:NumericalData
This dataset contains spin resolution measurements of the magnetic field vector from the fluxgate magnetometer (FGM) instrument on the Cluster Tango spacecraft.

44) Cluster II Tango Unvalidated Prime Parameter Fluxgate Magnetometer (FGM) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/FGM/UnvalidatedParameter/4S
Start:2006-01-01 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Fluxgate Magnetometer (FGM) Resource:NumericalData
This dataset contains spin resolution unvalidated prime parameter measurements of the magnetic field vector from the fluxgate magnetometer (FGM) instrument on the Cluster 2 Tango spacecraft. Unvalidated FGM data might sometimes contain artefacts such as spikes (duration ~ 1 spin), or short rotations (few spins). Very occasionally the data contain many spikes over several hours. Please contact Elizabeth Lucek (e.lucek@imperial.ac.uk) for more information regarding possible artefacts in specific intervals of data. The unvalidated prime parameter Data Set does not contain the spacecraft position data or additional range and telemetry mode information that the CAA parameter data set does contain.

45) Cluster II Tango Prime Parameter Plasma Electron and Current Experiment (PEACE) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/PEACE/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Plasma Electron and Current Experiment (PEACE) Resource:NumericalData
The primary task of this instrument (PEACE: Plasma Electrons and Currents Experiment) is to obtain the velocity moments of the distribution function of electrons as frequently and as accurately as the spacecraft telemetry will allow. Detector counts are collected in energy, polar-angle, and azimuth-angle bins to form a three-dimensional matrix. Two sensors are used: LEEA (low-energy electron analyzer) and HEEA (high-energy electron analyzer). The energy coverage is from 0.67 eV to 30 KeV in 92 levels. The first 16 levels are equally spaced linearly up to 10.7 eV; the remainder are logarithmically spaced. Both sensors can use the full range, but the HEEA will normally operate over a higher energy range than the LEEA. The LEEA specializes in coverage of the energies from 0.7-10 eV, and has a geometric factor one fifth that of the HEAA. Both sensors consist of hemispherical electrostatic analyzers of the top-hat type and a detector in the form of an annular micro-channel plate with a position-sensitive readout. Each sensor covers the range 0-180 degrees with respect to the spin axis, and they are mounted opposite each other with a view perpendicular to the spin axis, thus covering the complete angular range in a half rotation of the spacecraft. The field of view perpendicular to the fan is 2 degrees for the LEEA and 5.6 degrees for the HEEA. Energy resolution (Delta-E)/E is 0.13 for LEEA and 0.16 for HEEA. There are four sweep modes, synchronized to the spin period (4 s), to vary the azimuthal angular resolution. The spin phasing can be made coincident with that of the CIS instrument, to ensure that the electron and ion moments will be measured simultaneously. On-board processing is used to calculate the moments of the distribution with an accuracy of 1% and to select suitable parts of the complete distribution for transmission. The normal science data format is based on one spin period, and consists of core data followed by other optional distributions as can be fit into the available telemetry for that spin. The core data (moments, spacecraft potential, and pitch angle distribution) are always transmitted (if the spin is nominal). The next distribution is transmitted if, before the end of the spin, all the previous data have been sent. Thus the next spin of data will be transmitted slightly late, but all of its core data will be transmitted before the following spin of data is started on. Eventually the transmission will catch up and be able to transmit the distribution after the core again, but only after some time. This applies at all telemetry rates. The instrument can adapt automatically to six different telemetry rates: a basic 1.52 Kbps rate (CIS priority); a normal 2.52 Kbps rate; an enhanced PEACE priority rate of 3.54 Kbps; and three burst mode rates, with a maximum of 15.98 Kbps. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article PEACE: a Plasma Electron and Current Experiment, by A. D. Johnstone et al., from which this information was obtained.

46) Cluster II Tango Prime Parameter Research with Adaptive Particle Imaging Detectors (RAPID) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/RAPID/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Research with Adaptive Particle Imaging Detectors (RAPID) Resource:NumericalData
The dual-sensor spectrometer RAPID (Research with Adaptive Particle Imaging Detectors) analyzes suprathermal plasma distributions in the energy range from 20-400 KeV for electrons and from 2 KeV/nucleon to 1.50 MeV/nucleon for ions. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article RAPID: The Imaging Energetic Particle Spectrometer on Cluster, by B. Wilken et al., from which this information was obtained.

47) Cluster II Tango Prime Parameter Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/STAFF/PrimeParameter/4S
Start:2000-12-09 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) Resource:NumericalData
The Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF) experiment provides magnetic field power spectral density values parallel and perpendicular to the magnetic field and the electric field power spectral density values for several frequency ranges. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission, by N. Cornilleau-Wehrlin et al., from which this information was obtained.

48) Cluster 4 WHISPER Natural Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Tango/WHISPER/PT2S
Start:2000-08-16 12:39:00 Observatory:Cluster FM8 (Tango) Cadence:2.14 seconds
Stop:2014-07-23 01:02:40 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

49) Cluster 4 WHISPER Active Electric Power Spectral Density maxmize
Resource ID:spase://VWO/NumericalData/Cluster-Tango/WHISPER/PT52S
Start:2000-08-16 12:39:00 Observatory:Cluster FM8 (Tango) Cadence:52 seconds
Stop:2014-07-23 01:02:40 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) performs the measurement of the electron density on the four satellites of the Cluster project. The two main purposes of the WHISPER experiment are to record the natural waves and to make a diagnostic of the electron density using the sounding technique. The various working modes and the fourier transforms calculated on board provide a good frequency resolution obtained in the bandwidth 2-83 kHz. Onboard data compression by the Digital Wave Processing (DWP) intrument allows a good dynamic and level resolution of the electric signal amplitude.

50) Cluster II Tango Prime Parameter Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Data maxmize
Resource ID:spase://VMO/NumericalData/Cluster-Tango/WHISPER/PrimeParameter/4S
Start:2000-12-10 00:00:00 Observatory:Cluster FM8 (Tango) Cadence:4 seconds
Stop:2014-07-23 01:01:42 Instrument:Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) Resource:NumericalData
The Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER) experiment provides measurements of the electron density via active sounding of plasma resonances and records via passive wave analysis the natural wave emissions in the high-frequency range, from 4-80 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article WHISPER, a Sounder and High-Frequency Wave Analyser Experiment, by P. M. E. Decreau et al., from which this information was obtained.

Showing 1 - 50Next